Final JEE-Main Exam April, 2024/04-04-2024/Evening Session

(He	FINAL JEE-MAIN EXAMINATION - APRIL, 2024 Held On Thursday 04 th April, 2024) TIME : 3 : 00 PM to 6 : 00 PM						
	MATHEMATICS	TEST PAPER WITH ANSWER					
	SECTION-A	5.	Let three real numbers a,b,c be in arithmetic				
l.	If the function $f(x) = \begin{cases} \frac{72^x - 9^x - 8^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} , & x \neq 0 \\ a \log_e 2 \log_e 3 , & x = 0 \end{cases}$ is continuous at $x = 0$, then the value of a^2 is equal to (1) 968 (2) 1152 (3) 746 (4) 1250 Ans. (2)		progression and $a + 1$, b, $c + 3$ be in geometric progression. If $a > 10$ and the arithmetic mean of a,b and c is 8, then the cube of the geometric mean of a,b and c is (1) 120 (2) 312 (3) 316 (4) 128 Ans. (1)				
	If $\lambda > 0$, let θ be the angle between the vectors $\vec{a} = \hat{i} + \lambda \hat{j} - 3\hat{k}$ and $\vec{b} = 3\hat{i} - \hat{j} + 2\hat{k}$. If the vectors	6.	Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = I + adj(A) + (adj A)^2 + \dots$				
	$\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are mutually perpendicular, then the value of $(14 \cos \theta)^2$ is equal to (1) 25 (2) 20 (3) 50 (4) 40 Ans. (1)		(adj A) ¹⁰ . Then, the sum of all the elements of the matrix B is : (1) -110 (2) 22 (3) -88 (4) -124				
-	Let C be a circle with radius $\sqrt{10}$ units and centre at the origin. Let the line x + y = 2 intersects the circle C at the points P and Q. Let MN be a chord of C of length 2 unit and slope -1. Then, a distance (in units) between the chord PQ and the chord MN is	7.	Ans. (3) The value of $\frac{1 \times 2^2 + 2 \times 3^2 + + 100 \times (101)^2}{1^2 \times 2 + 2^2 \times 3 + + 100^2 \times 101}$ is (1) $\frac{306}{305}$ (2) $\frac{305}{301}$				
	(1) $2 - \sqrt{3}$ (2) $3 - \sqrt{2}$ (3) $\sqrt{2} - 1$ (4) $\sqrt{2} + 1$ Ans. (2)		(3) $\frac{32}{31}$ (4) $\frac{31}{30}$ Ans. (2)				
 Let a relation R on N×N be defined as: (x₁,y₁) R(x₂,y₂) if and only if x₁ ≤ x₂ or y₁ ≤ y₂ Consider the two statements: (I) R is reflexive but not symmetric. 		8.	8. Let $f(x) = \int_{0}^{x} (t + \sin(1 - e^{t})) dt, x \in \mathbb{R}$. Then $\lim_{x \to 0} \frac{f(x)}{x^{3}}$ is equal to				
	(II) R is transitiveThen which one of the following is true ?(1) Only (II) is correct.		(1) $\frac{1}{6}$ (2) $-\frac{1}{6}$				
	 (2) Only (I) is correct. (3) Both (I) and (II) are correct. (4) Neither (I) nor (II) is correct. Ans. (2) 		(3) $-\frac{2}{3}$ (4) $\frac{2}{3}$ Ans. (2)				

A

ALLEN®

Download the new ALLEN app & enroll for Online Programs

Final JEE-Main Exam April, 2024/04-04-2024/Evening

14.

- 9. The area (in sq. units) of the region described by $\{(x,y): y^2 \le 2x, \text{ and } y \ge 4x - 1\}$ is (1) $\frac{11}{32}$ (2) $\frac{8}{9}$ (3) $\frac{11}{12}$ (4) $\frac{9}{32}$ Ans. (4) 10. The area (in sq. units) of the region
- For fine and (in sq. and) of the region $S = \{z \in \mathbb{C}; |z-1| \le 2; (z+\overline{z}) + i(z-\overline{z}) \le 2, \operatorname{Im}(z) \ge 0\}$ is (1) $\frac{7\pi}{3}$ (2) $\frac{3\pi}{2}$ (3) $\frac{17\pi}{8}$ (4) $\frac{7\pi}{4}$ Ans. (2)

11. If the value of the integral $\int_{-1}^{1} \frac{\cos \alpha x}{1+3^x} dx$ is $\frac{2}{\pi}$.

Then, a value of α is

(1) $\frac{\pi}{6}$ (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{4}$

Ans. (2)

- 12. Let $f(x) = 3\sqrt{x-2} + \sqrt{4-x}$ be a real valued function. If α and β are respectively the minimum and the maximum values of f, then $\alpha^2 + 2\beta^2$ is equal to
 - (1) 44
 (2) 42

 (3) 24
 (4) 38

- 13. If the coefficients of x^4 , x^5 and x^6 in the expansion of $(1 + x)^n$ are in the arithmetic progression, then the maximum value of n is :
 - (1) 14 (2) 21 (3) 28 (4) 7 **Ans. (1)**

Consider a hyperbola H having centre at the origin and foci and the x-axis. Let C_1 be the circle touching the hyperbola H and having the centre at the origin. Let C_2 be the circle touching the hyperbola H at its vertex and having the centre at one of its foci. If areas (in sq. units) of C_1 and C_2 are 36π and 4π , respectively, then the length (in units) of latus rectum of H is

(1)
$$\frac{28}{3}$$

(3) $\frac{10}{3}$ (2) $\frac{14}{3}$
(4) $\frac{11}{3}$

Ans. (1)

15. If the mean of the following probability distribution of a random variable X;

X	0	2	4	6	8
P(X)	a	2a	a + b	2b	3b

is $\frac{46}{9}$, then the variance of the distribution is

1)
$$\frac{581}{81}$$
 (2) $\frac{566}{81}$

(3)
$$\frac{173}{27}$$
 (4) $\frac{151}{27}$

Ans. (2)

16. Let PQ be a chord of the parabola $y^2 = 12x$ and the midpoint of PQ be at (4,1). Then, which of the following point lies on the line passing through the points P and Q?

(1) (3,-3)
(2)
$$\left(\frac{3}{2},-16\right)$$

(3) (2,-9)
(4) $\left(\frac{1}{2},-20\right)$
Ans. (4)

CLICK HERE TO

Final JEE-Main Exam April, 2024/04-04-2024/Evening

17.	Given the inverse trigonometric function assumes		
	principal values only. Let x, y be any two real		
	numbers in $[-1,1]$ such that		
	$\cos^{-1}x - \sin^{-1}y = \alpha, \frac{-\pi}{2} \le \alpha \le \pi.$		

Then, the minimum value of $x^2 + y^2 + 2xy \sin \alpha$ is

(1)
$$-1$$
 (2) 0
(3) $\frac{-1}{2}$ (4) $\frac{1}{2}$

Ans. (2)

18. Let y = y(x) be the solution of the differential equation

> $(x^{2} + 4)^{2}$ dy + $(2x^{3}y + 8xy - 2)$ dx = 0. If y(0) = 0, then y(2) is equal to

(1)
$$\frac{\pi}{8}$$
 (2) $\frac{\pi}{16}$
(3) 2π (4) $\frac{\pi}{32}$

Ans. (4)

19. Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$$
 and
 $\vec{c} = x\hat{i} + 2\hat{j} + 3\hat{k}, x \in \mathbb{R}$. If \vec{d} is the unit vector

or in the direction of $\vec{b} + \vec{c}$ such that $\vec{a} \cdot \vec{d} = 1$, then $(\vec{a} \times \vec{b}) \cdot \vec{c}$

(2) 6

is equal to

- (1)9
- (3)3(4) 11

Ans. (4)

20. Let P the point of intersection of the lines

$$\frac{x-2}{1} = \frac{y-4}{5} = \frac{z-2}{1} \text{ and } \frac{x-3}{2} = \frac{y-2}{3} = \frac{z-3}{2}$$

 $\frac{\sqrt{14}}{7}$

6√14

Then, the shortest distance of P from the line

$$4x = 2y = z$$
 is

(1)
$$\frac{5\sqrt{14}}{7}$$
 (2)
(3) $\frac{3\sqrt{14}}{7}$ (4)

(3)

Download the new ALLEN app & enroll for Online Programs

SECTION-B

- Let S = {sin²2 θ : (sin⁴ θ + cos⁴ θ)x² + (sin2 θ)x + 21. $(\sin^6 \theta + \cos^6 \theta) = 0$ has real roots}. If α and β be the smallest and largest elements of the set S, respectively, then $3((\alpha - 2)^2 + (\beta - 1)^2)$ equals.... Ans. (4)
- If $\int \csc^5 x dx = \alpha \cot x \csc \left(\csc^2 x + \frac{3}{2} \right) + \beta \log_e \left| \tan \frac{x}{2} \right| + C$ 22. where $\alpha, \beta \in \mathbb{R}$ and C is constant of integration,

then the value of $8(\alpha + \beta)$ equals Ans. (1)

Let $f : \mathbb{R} \to \mathbb{R}$ be a thrice differentiable function 23. such that f(0) = 0, f(1) = 1, f(2) = -1, f(3) = 2 and f(4) = -2. Then, the minimum number of zeros of (3f' f'' + ff''') (x) is

Ans. (5)

24. Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \frac{2x}{\sqrt{1+9x^2}}$$
. If the composition of

$$f_{x}(\underbrace{f \text{ o f o f 0...o f}}_{10 \text{ times}})(x) = \frac{2^{10}x}{\sqrt{1+9\alpha x^2}}, \text{ then } \text{ the}$$
value of $\sqrt{3\alpha+1}$ is equal to

Ans. (1024)

25. Let A be a 2×2 symmetric matrix such that $A\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}3\\7\end{bmatrix}$ and the determinant of A be 1.

> If $A^{-1} = \alpha A + \beta I$, where I is an identity matrix of order 2 × 2, then α + β equals

Ans. (5)

26. There are 4 men and 5 women in Group A, and 5 men and 4 women in Group B. If 4 persons are selected from each group, then the number of ways of selecting 4 men and 4 women is

Ans. (5626)

Final JEE-Main Exam April, 2024/04-04-2024/Evening

- 27. In a tournament, a team plays 10 matches with probabilities of winning and losing each match as $\frac{1}{3}$ and $\frac{2}{3}$ respectively. Let x be the number of matches that the team wins, and y be the number of matches that team loses. If the probability $P(|x y| \le 2)$ is p, then 3⁹p equals...... Ans. (8288)
- 28. Consider a triangle ABC having the vertices A(1,2), B(α , β) and C(γ , δ) and angles $\angle ABC = \frac{\pi}{6}$ and $\angle BAC = \frac{2\pi}{3}$. If the points B and C lie on the line y = x + 4, then $\alpha^2 + \gamma^2$ is equal to Ans. (14)
- 29. Consider a line L passing through the points P(1,2,1) and Q(2,1,-1). If the mirror image of the point A(2,2,2) in the line L is (α,β,γ), then α + β + 6γ is equal to
 Ans. (6)

30. Let y = y(x) be the solution of the differential equation $(x + y + 2)^2 dx = dy$, y(0) = -2. Let the maximum and minimum values of the function

y = y(x) in
$$\left[0, \frac{\pi}{3}\right]$$
 be α and β , respectively. If
 $(3\alpha + \pi)^2 + \beta^2 = \gamma + \delta\sqrt{3}, \gamma, \delta \in \mathbb{Z}$, then $\gamma + \delta$ equals

Ans. (31)

Download the new ALLEN app & enroll for Online Programs

Are you targeting JEE 2025?

Ace it with **ALLEN's** Leader Course

Online Program 18 APRIL '24

Offline Program 24 APRIL '24

ALLEN

Tree

Get The Latest **IT-JEE Special Books** at Your Door Steps...!!

JOIN THE JOURNEY OF LEARNING

with

SCORE TEST PAPERS | HANDBOOKS JEE-MAIN PYQ's | JEE-Adv. PYQ's

