FINAL JEE-MAIN EXAMINATION - APRIL, 2023 (Held On Monday 10th April, 2023) # TEST PAPER WITH SOLUTIONS #### **CHEMISTRY** #### **SECTION-A** - **61.** Using column chromatography, mixture of two compounds 'A' and 'B' was separated. 'A' eluted first, this indicates 'B' has - (1) low R, weaker adsorption - (2) high R_r, stronger adsorption - (3) high R, weaker adsorption - (4) low R_r, stronger adsorption Official Ans. by NTA (4) Allen Ans. (4) **Sol.** If any component eluted second then it means that its R_r value is low and its adsorption is stronger $R_f = \frac{\text{distance covered by substance from base line}}{\text{total distance covered by solvent from base line}}$ - Prolonged heating is avoided during **62.** preparation of ferrous ammonium sulphate to - (1) prevent oxidation - (2) prevent reduction - (3) prevent hydrolysis - (4) prevent breaking Official Ans. by NTA (1) Allen Ans. (1) **Sol.** Prolonged heating will cause oxidation of Fe⁺² to Fe⁺³. - Lime reacts exothermally with water to give 'A' **63.** which has low solubility in water. Aqueous solution of 'A' is often used for the test of CO, a test in which insoluble B is formed. If B is further reacted with CO, then soluble compound is formed 'A' is - (1) Quick lime - (2) Slaked lime - (3) Lime water - (4) White lime Official Ans. by NTA (2) Allen Ans. (2) **Sol.** $CaO + H_2O \rightarrow Ca(OH)_2$ A (less soluble) $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$ B (insoluble) $CaCO_3 + H_2O + CO_2 \rightarrow Ca(HCO_3)_2$ Soluble 64. The pair from the following pairs having both compounds with net non-zero dipole moment is TIME: 9:00 AM to 12:00 NOON - (1) Benzene, anisidine - (2) 1,4-Dichlorobenzene, 1,3-Dichlorobenzene - (3) CH₂Cl₂, CHCl₃ - (4) cis-butene, trans-butene Official Ans. by NTA (3) Allen Ans. (3) **Sol.** (1) Benzene \rightarrow non polar Anisidine \rightarrow polar (3) CH_2Cl_2 , $\mu_{net} \neq 0$ polar $CHCl_3$, $\mu_{net} \neq 0$ polar (4) \longrightarrow polar \searrow \Rightarrow non polar **65.** Match List-II with List-II > List-I List-II **Industry Waste Generated** - (A) Steel plants - (I) Gypsum - (B) Thermal power plants (II) Fly ash - (C) Fertilizer industries - (III) Slag - (D) Paper mils - (IV) Bio-degradable Wastes Choose the correct answer from the options given below: - (1) (A)-(III), (B)-(II), (C)-(I), (D)-(IV) - (2) (A)-(II), (B)-(III), (C)-(IV), (D)-(I) - (3) (A)-(IV), (B)-(I), (C)-(II), (D)-(III) - (4) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) Official Ans. by NTA (1) Allen Ans. (1) **Sol.** Steel plant produces slag from blast furnace. Thermal power plant produces fly ash, Fertilizer industries produces gypsum. Paper mills produces bio degradable waste **66.** Isomeric amines with molecular formula $C_8H_{11}N$ give the following tests Isomer (P) \Rightarrow Can be prepared by Gabriel phthalimide synthesis Isomer (Q) \Rightarrow Reacts with Hinsberg's reagent to give solid insoluble in NaOH Isomer (R) \Rightarrow Reacts with HONO followed by β -naphthol in NaOH to give red dye. Isomers (P), (Q) and (R) respectively are P Q R $$NH_2$$ NH_2 N # Official Ans. by NTA (1) Allen Ans. (1) **Sol.** (P) Gabriel phthalimide synthesis is used for the preparation of aliphatic primary amines. Aromatic primary amines cannot be prepared by this method. - (Q) 2°-amines reacts with Hinsberg's reagent to give solid insoluble in NaOH - (R) Aromatic primary amine react with nitrous acid at low temperature (273 298 K) to form diazonium salts, which form Red dye with $\beta\textsc{-}$ Naphthol - **67.** Given below are two statements Statement I : Aqueous solution of $K_2Cr_2O_7$ is preferred as a primary standard in volumetric analysis over $Na_2Cr_2O_7$ aqueous solution Statement II : $K_2Cr_2O_7$ has a higher solubility in water than $Na_3Cr_3O_7$ In the light of the above statements, choose the correct answer from the options given below: - (1) Both Statement I and Statement II are true - (2) Both Statement I and Statement II are false - (3) Both Statement I is true but Statement II is false - (4) Both Statement I is false but Statement II is true Official Ans. by NTA (3) Allen Ans. (3) - **Sol.** (1) $K_2Cr_2O_7$ is used as primary standard. The concentration $Na_2Cr_2O_7$ changes in aq. solution. - (2) It is less soluble than Na₂Cr₂O₂. - **68.** The one that does not stabilize 2° and 3° structures of proteins is - (1) H-bonding - (2) –S-S-linkage - (3) –O-O-linkage - (4) van der Waals forces Official Ans. by NTA (3) Allen Ans. (3) **Sol.** 2° and 3° structure of proteins are stabilized by hydrogen bonding, disulphide linkages, Van der Waals force of attraction and electrostatic force of attraction. **69.** Given below are two reactions, involved in the commercial production of dihydrogen (H₂). The two reactions are carried out at temperature "T₁" and "T₂" respectively $$C(s) + H_2O(g) \xrightarrow{T_1} CO(g) + H_2(g)$$ $$CO(g) + H_2O(g) \xrightarrow{T_2} CO_2(g) + H_2(g)$$ The temperature T_1 and T_2 are correctly related as $(1) T_1 > T_2$ (2) $T_1 = T_2$ (3) $T_1 = 100 \text{ K}, T_2 = 1270 \text{ K}$ $(4) T_1 < T_2$ Official Ans. by NTA (1) Allen Ans. (1) **Sol.** $T_1 = 1270 \text{ K}$ $T_{2} = 673 \text{ K}$ $T_1 > T_2$, on the basis of data - **70.** Which of the following statements are correct? - (A) The M^{3+}/M^{2+} reduction potential for iron is greater than manganese - (B) The higher oxidation states of first row d-block elements get stabilized by oxide ion. - (D) Magnetic moment of V^{2+} is observed between 4.4-5.2 BM Choose the correct answer from the options given below: (1) (B), (C) only (C), (D) only (2) (A), (B), (D) only (A), (B) only Official Ans. by NTA (1) Allen Ans. (1) - **Sol.** (A) The M³⁺/M²⁺ reduction potential for manganese is greater than iron - (B) $E^0_{Fe^{+3}/Fe^{+2}} = +0.77$ $$E^0_{Mn^{+3}/Mn^{+2}} = +1.57$$ - (C) $E^0_{Cr^{+3}/Cr^{+2}} = -0.26$ - $\therefore \quad Cr^{2\oplus} + H^{\oplus} \longrightarrow Cr^{3\oplus} + \frac{1}{2}H_2$ - (D) $V^{2\oplus} = 3$ unpaired electron Magnetic Moment = 3.87 B.M - **71.** Which of the following is used as a stabilizer during the concentration of sulphide ores? - (1) Pine oils - (2) Xanthates - (3) Fatty acids - (4) Cresols #### Official Ans. by NTA (4) Allen Ans. (4) Sol. Cresol is used as stabilizer. - **72.** The octahedral diamagnetic low spin complex among the following is - (1) [NiCl₄]²⁻ - (2) [CoCl₆]³⁻ - (3) $[CoF_6]^{3}$ - (4) $[Co(NH_3)_6]^{3+}$ #### Official Ans. by NTA (4) Allen Ans. (4) - Sol. (1) Paramagnetic, High Spin & Tetrahedral - (2) Paramagnetic, High Spin & Octahedral - (3) Paramagnetic, High Spin & Octahedral - (4) Diamagnetic, Low Spin & Octahedral $$[Co(NH_3)_6]^{3+}$$, $CN = 6$ (Octahedral) $$NH_3 = SFL$$ $$Co^{+3} = [Ar]3d^{6}$$ Diamagnetic & Low spin complex - **73.** Given - (A) $2CO(g)+O_{2}(g) \rightarrow 2CO_{2}(g)$ $\Delta H_{1}^{\theta} = -x \text{ kJ mol}^{-1}$ - (B) $C(graphite) + O_2(g) \rightarrow CO_2(g) \Delta H_2^{\theta} = -y kJ mol^{-1}$ The ΔH^{θ} for the reaction C(graphite) + $$\frac{1}{2}$$ O₂(g) \rightarrow CO(g) is - $(1) \frac{x-2y}{2}$ - $(3) \frac{x+2y}{2}$ - $(3) \ \frac{2x-y}{2}$ - (4) 2y x #### Official Ans. by NTA (1) Allen Ans. (1) Sol. Target equation $$C(graphite) + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)} \dots(i) \Delta H$$ C(graphite)+ $$O_{2(g)} \rightarrow CO_{2(g)}$$.(ii) $\Delta H_1 = -y \text{ kJ/mole}$ $$CO_{2(g)} \rightarrow CO_{(g)} + \frac{1}{2} O_{2(g)} ...(iii) \Delta H_2 = \frac{x}{2} \text{kJ/mole}$$ $$eq. (i) = eq.(ii) + eq (iii)$$ $$\therefore \Delta H = \frac{x}{2} - y = \frac{x - 2y}{2}$$ - **74.** The compound which does not exist is - (1) NaO, - $(2) (NH_4)_2 BeF_4$ - (3) BeH, - (4) PbEt₄ #### Official Ans. by NTA (1) Allen Ans. (1) Sol. Sodium superoxide is not stable 75. Match List I with List II #### List-I #### List-II #### **Polymer** #### Type/Class - (A) Nylon-2-Nylon-6 (I) Thermosetting Polymer - (B) Buna-N - (II) Biodegradable polymer - (C) Urea-formaldehyde (III) Synthetic rubber resin - (D) Dacron - (IV) Polyester Choose the correct answer from the options given below: - (1) (A)-(IV), (B)-(I), (C)-(III), (D)-(II) - (2) (A)-(IV), (B)-(III), (C)-(I), (D)-(II) - (3) (A)-(II), (B)-(I), (C)-(IV), (D)-(III) - (4) (A)-(II), (B)-(III), (C)-(I), (D)-(IV) #### Official Ans. by NTA (4) #### Allen Ans. (4) #### Sol. - (A) Nylon-2-nylon-6 Biodegradable polymer and polyamides (II) - (B) Buna-N \rightarrow Butadiene acrylonitrile rubber \rightarrow synthetic rubber (III) - (C) Urea-formaldehyde resin \rightarrow Thermosetting polymer (I) - (D) Dacron → Polyester polymer of ethylene glycol and terephthalic acid (IV) - **76.** The number of molecules and moles in 2.8375 litres of O₂ at STP are respectively - (1) 7.527×10^{22} and 0.250 mol - (2) 1.505×10^{23} and 0.250 mol - (3) 7.527×10^{23} and 0.125 mol - (4) 7.527×10^{22} and 0.125 mol #### Official Ans. by NTA (4) #### Allen Ans. (4) **Sol.** Number of moles of $O_2 = \frac{2.8375}{22.7} = 0.125$ \Rightarrow Number of molecules = 0.125 N_A $$=7.525\times10^{22}$$ - 77. The enthalpy change for the adsorption process and micelle formation respectively are - (1) $\Delta H_{ads} < 0$ and $\Delta H_{mic} > 0$ - (2) $\Delta H_{ads} < 0$ and $\Delta H_{mic} < 0$ - (3) $\Delta H_{ads} > 0$ and $\Delta H_{mic} < 0$ - (4) $\Delta H_{ads} > 0$ and $\Delta H_{mic} > 0$ #### Official Ans. by NTA (1) #### Allen Ans. (1) **Sol.** Adsorption is exothermic process due to decrease in surface energy Micelle formation is endothermic **78.** The major product 'P' formed in the given reaction is $$CH_{2}CH_{3}$$ $$COOCH_{3} \xrightarrow{\text{(i) alk. KMnO}_{4}, \Delta} P$$ $$CH=CH_{2} P$$ $$Major product$$ #### Official Ans. by NTA (4) #### Allen Ans. (4) #### Sol. KMnO $_4$ oxidises benzylic carbon containing atleast one α -hydrogen atom to –COOH. $$\begin{array}{c} \text{CH}_2\text{CH}_3 \\ \\ \hline \\ \text{COOCH}_3 \xrightarrow{(i) \text{ alk. KMnO}_{\mathfrak{p}} \, \Delta} \\ \\ \text{CH=CH}_2 \end{array} \begin{array}{c} \text{COOH} \\ \\ \hline \\ \text{COOH} \end{array}$$ ## Final JEE-Main Exam April, 2023/10-04-2023/Morning Session - **79.** Suitable reaction condition for preparation of Methyl phenyl ether is - (1) Ph Br, MeO^-Na^+ - (2) PhO⁻Na⁺, MeOH - (3) PhO⁻Na⁺, MeBr - (4) Benzene, MeBr Official Ans. by NTA (3) Allen Ans. (3) Sol. $$PhO^-Na^+ + Me - Br \xrightarrow{S_N 2} Ph - O - Me$$ **80.** Identify the correct order of reactivity for the following pairs towards the respective mechanism $$(A) S_{N}2$$ $$Br > Br$$ $$(B) S_{N}1$$ $$Cl Cl$$ (C) Electrophilic substitution Choose the correct answer from the options given below: - (1) (A), (B) and (D) only - (2) (A), (B), (C) and (D) - (3) (A), (C) and (D) only - (4) (B), (C) and (D) only Official Ans. by NTA (2) Allen Ans. (2) Sol. All are correct - (A) S_N2 reaction decreases with increase in steric crowding. - (B) $S_N 1$ reaction increases with stability of carbocation. - (C) EAS reaction decreases with decrease in electron density. - (D) Presence of electron withdrawing group at ortho and para-position to a halogen in haloarene increase nucleophilic aryl substitution. #### **SECTION-B** - **81.** The number of correct statement/s involving equilibria in physical process from the following is - (A) Equilibrium is possible only in a closed system at a given temperature - (B) Both the opposing processes occur at the same rate. - (C) When equilibrium is attained at a given temperature, the value of all its parameters became equal - (D) For dissolution of solids in liquids, the solubility is constant at a given temperature Official Ans. by NTA (3) Allen Ans. (3) Sol. (A) is correct - (B) for equilibrium $r_f = r_b$ - \Rightarrow (B) is correct - (C) at equilibrium the value of parameters become constant of a given temperature and not equal - \Rightarrow (C) is incorrect - (D) for a given solid solute and a liquid solvent solubility depends upon temperature only - \Rightarrow (D) is correct - **82.** The number of bent-shaped molecule/s from the following is _____ $N_3^-, NO_2^-, I_3^-, O_3, SO_2$ Official Ans. by NTA (3) Allen Ans. (3) **Sol.** N_3^- linear NO₂ bent I₃ linear O, bent SO, bent 83. A molecule undergoes two independent first order reactions whose respective half lives are 12 min and 3 min. If both the reactions are occurring then the time taken for the 50% consumption of the reactant is _____ min. (Nearest integer) #### Official Ans. by NTA (2) Allen Ans. (2) Sol. $$\frac{1}{t_{1/2}} = \frac{1}{3} + \frac{1}{12} = \frac{4+1}{12} = \frac{5}{12}$$ $t_{1/2} = \frac{12}{5} \min = 2.4$ Ans. is 2 - **84.** The number of incorrect statement/s about the black body from the following is ______ - (A) Emit or absorb energy in the form of electromagnetic radiation - (B) Frequency distribution of the emitted radiation depends on temperature - (C) At a given temperature, intensity vs frequency curve passes through a maximum value - (D) The maximum of the intensity vs frequency curve is at a higher frequency at higher temperature compared to that at lower temperature #### Official Ans. by NTA (0) #### Allen Ans. (0) **Sol.** A blackbody can emit and absorb all the wavelengths in electromagnetic spectrum \Rightarrow (A) is correct \Rightarrow (B), (C), (D) correct Ans (0) **85.** In the following reactions, the total number of oxygen atoms in X and Y is _____ $$Na_2O + H_2O \rightarrow 2X$$ $$Cl_2O_7 + H_2O \rightarrow 2Y$$ Official Ans. by NTA (5) Allen Ans. (5) Sol. $Na_2O + H_2O \rightarrow 2NaOH$ $$Cl_2O_7 + H_2O \rightarrow 2HClO_4$$ $$1 + 4 = 5$$ **86.** $FeO_4^{2-} \xrightarrow{+2.2 \text{ V}} Fe^{3+} \xrightarrow{+0.70 \text{ V}} Fe^{2+} \xrightarrow{-0.45 \text{ V}} Fe^0$ $$E_{FeO_4^{2-}/Fe^{2+}}^{\theta}$$ is $x \times 10^3$ V. The value of x is _____ Official Ans. by NTA (1825) Allen Ans. (1825) Sol. $$FeO_4^{2-} \xrightarrow[n=3]{2.2V} Fe^{3+} \xrightarrow[n=1]{0.7V} Fe^{2+} \xrightarrow{-0.45V} Fe$$ $$E = ?$$ $$n = 4$$ $$4 \times E = 3 \times 2.2 + 1 \times 0.7$$ $$E = \frac{7.3}{4} = 1.825 \text{ V} = 1825 \times 10^{-3} \text{ V}$$ 87. If the degree of dissociation of aqueous solution of weak monobasic acid is determined to be 0.3, then the observed freezing point will be _____ % higher than the expected/theoretical freezing point. (Nearest integer) Official Ans. by NTA (30) Allen Ans. (30) Sol. $$i = 1 + \alpha$$ (for HA) = 1.3 % increase = $$\frac{(\Delta T_f)_{obs} - (\Delta T_f)_{cal}}{(\Delta T_f)_{cal}} \times 100$$ $$= \frac{K_f \times i \times m - K_f \times m}{K_f \times m} \times 100$$ $$= \frac{i - 1}{1} \times 100 = 30\%$$ ## Final JEE-Main Exam April, 2023/10-04-2023/Morning Session **88.** In potassium ferrocyanide, there are ____ pairs of electrons in the t_{2g} set of orbitals Official Ans. by NTA (3) Allen Ans. (3) Sol. $K_4[Fe(CN)_6]$ $$Fe^{^{\scriptscriptstyle{+2}}}=[Ar]3d^{^{\scriptscriptstyle{6}}}$$ $CN^- = SFL$ t_{2g} contain 6 electron so it become 3 pairs:- **89.** At constant temperature a gas is at a pressure of 940.3 mm Hg. The pressure at which its volume decreases by 40% is _____ mm Hg. (Nearest Integer) Official Ans. by NTA (1567) Allen Ans. (1567) **Sol.** $$P_1V_1 = P_2V_2$$ $$940.3 \times 100 = P_2 \times 60$$ $$P_2 = 1567 \text{ mm of Hg}$$ **90.** The sum of lone pairs present on the central atom of the interhalogen IF₅ and IF₇ is _____ Official Ans. by NTA (1) Allen Ans. (1) **Sol.** $IF_5 = 1$ lone pair $IF_7 = 0$ lone pair $$1+0=1$$ # SCALE UP YOUR SCORE! with ALLEN SCORE TEST PAPERS Total 10 Full syllabus papers Paper Analysis of JEE Advanced '22 By **ALLEN**Subject Experts **Answer key** with Solutions Scan QR to Buy