

FINAL JEE(Advanced) EXAMINATION - 2023

(Held On Sunday 04th June, 2023)

PAPER-2

TEST PAPER WITH ANSWER

CHEMISTRY

SECTION-1: (Maximum Marks: 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

1. The correct molecular orbital diagram for F_2 molecule in the ground state is

Ans. (C)

- **2.** Consider the following statements related to colloids.
 - (I) Lyophobic colloids are **not** formed by simple mixing of dispersed phase and dispersion medium.
 - (II) For emulsions, both the dispersed phase and the dispersion medium are liquid.
 - (III) Micelles are produced by dissolving a surfactant in any solvent at any temperature.
 - (IV) Tyndall effect can be observed from a colloidal solution with dispersed phase having the same refractive index as that of the dispersion medium.

The option with the correct set of statements is

- (A)(I) and (II)
- (B) (II) and (III)
- (C) (III) and (IV)
- (D) (II) and (IV)

Ans. (A)

3. In the following reactions, P, Q, R, and S are the major products.

(i) Mg, dry ether
(ii)
$$H_2O$$

P

(i) Mg, dry ether
(ii) CO_2 , dry ether
(iii) H_3O^+
(iv) NaOH

(i) Mg, dry ether
(ii) CH_3CHO , then H_2O
(iii) CH_3CHO , then H_2O
(iii) CH_3CHO , then H_2O
(ii) ethanolic NaCN
(ii) H_2/Ni
(iii) $CHCl_3/KOH$, A

Cl
(iv) LiAlH₄, then H_2O

The correct statement about P, Q, R, and S is

- (A) **P** is a primary alcohol with four carbons.
- (B) **Q** undergoes Kolbe's electrolysis to give an eight-carbon product.
- (C) **R** has six carbons and it undergoes Cannizzaro reaction.
- (D) **S** is a primary amine with six carbons.

Ans. (B)

4. A disaccharide \mathbf{X} cannot be oxidised by bromine water. The acid hydrolysis of \mathbf{X} leads to a laevorotatory solution. The disaccharide \mathbf{X} is

$$(A) \begin{array}{c|cccccc} CH_2OH & CH_2OH \\ H & OH & H \\ OH & OH & OH & H \\ \end{array}$$

Ans. (A)

SECTION-2: (Maximum Marks: 12)

- This section contains **THREE** (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen,

both of which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it

is a correct option;

Zero Marks : 0 If unanswered; Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and

choosing any other option(s) will get -2 marks.

- 5. The complex(es), which can exhibit the type of isomerism shown by $[Pt(NH_3)_2Br_2]$, is(are) $[en = H_2NCH_2CH_2NH_2]$
 - (A) $[Pt(en)(SCN)_2]$
- (B) $[Zn(NH_3)_2Cl_2]$
- (C) $[Pt(NH_3)_2Cl_4]$
- (D) $[Cr(en)_2(H_2O)(SO_4)]^+$

Ans. (C,D)

6. Atoms of metals x, y, and z form face-centred cubic (fcc) unit cell of edge length L_x , body-centred cubic (bcc) unit cell of edge length L_y , and simple cubic unit cell of edge length L_z , respectively.

If
$$r_z = \frac{\sqrt{3}}{2}r_y$$
; $r_y = \frac{8}{\sqrt{3}}r_x$; $M_z = \frac{3}{2}M_y$ and $M_z = 3M_x$, then the correct statement (s) is (are)

[Given : M_x , M_y , and M_z are molar masses of metals x, y, and z, respectively.

 r_x , r_y , and r_z are atomic radii of metals x, y, and z, respectively.]

- (A) Packing efficiency of unit cell of x > Packing efficiency of unit cell of y > Packing efficiency of unit cell of z
- (B) $L_v > L_z$
- (C) $L_x > L_v$
- (D) Density of x > Density of y

Ans. (A,B,D)

7. In the following reactions, P, Q, R, and S are the major products.

$$(i) \text{KMnO}_{4}, \text{KOH}, \Delta \\ (ii) \text{H}_{3}\text{O}^{\oplus} \end{pmatrix} P$$

$$MeOOC \qquad COCI \qquad (i) \text{NaOH}, \text{H}_{2}\text{O} \\ (ii) \text{H}_{3}\text{O}^{\oplus} \end{pmatrix} Q$$

$$COOMe \qquad (i) \text{H}_{3}\text{O}^{\oplus}, \Delta \\ (ii) \text{H}_{2}\text{CrO}_{4} \end{pmatrix} R$$

$$(i) \text{Mg}, \text{dry ether} \\ (ii) \text{CO}_{2}, \text{then H}_{3}\text{O}^{\oplus} \\ (iii) \text{Ammoniacal AgNO}_{3}, \text{H}_{3}\text{O}^{\oplus} \end{cases} S$$

The correct statement (s) about **P**, **Q**, **R**, and **S** is (are)

- (A) **P** and **Q** are monomers of polymers dacron and glyptal, respectively.
- (B) **P**, **Q**, and **R** are dicarboxylic acids.
- (C) Compounds \mathbf{Q} and \mathbf{R} are the same.
- (D) **R** does **not** undergo aldol condensation and **S** does **not** undergo Cannizzaro reaction.

Ans. (C,D)

SECTION-3: (Maximum Marks: 24)

- This section contains **SIX** (06) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases

8. H_2S (5 moles) reacts completely with acidified aqueous potassium permanganate solution. In this reaction, the number of moles of water produced is \mathbf{x} , and the number of moles of electrons involved is \mathbf{y} . The value of $(\mathbf{x} + \mathbf{y})$ is _____.

Ans. (18)

9. Among $[I_3]^+$, $[SiO_4]^{4-}$, SO_2Cl_2 , XeF_2 , SF_4 , ClF_3 , $Ni(CO)_4$, XeO_2F_2 , $[PtCl_4]^{2-}$, XeF_4 , and $SOCl_2$, the total number of species having sp^3 hybridised central atom is _____.

Ans. (5)

10. Consider the following molecules: Br_3O_8 , F_2O , $H_2S_4O_6$, $H_2S_5O_6$, and C_3O_2 .

Count the number of atoms existing in their zero oxidation state in each molecule. Their sum is .

Ans. (6)

11. For He⁺, a transition takes place from the orbit of radius 105.8 pm to the orbit of radius 26.45 pm.

The wavelength (in nm) of the emitted photon during the transition is ____.

[Use:

Bohr radius, a = 52.9 pm

Rydberg constant, $R_H = 2.2 \times 10^{-18} \, J$

Planck's constant, $h = 6.6 \times 10^{-34} \,\mathrm{J s}$

Speed of light, $c = 3 \times 10^8 \,\mathrm{m \ s^{-1}}$

Ans. (30)

12. 50 mL of 0.2 molal urea solution (density = 1.012 g mL⁻¹ at 300 K) is mixed with 250 mL of a solution containing 0.06 g of urea. Both the solutions were prepared in the same solvent. The osmotic pressure (in Torr) of the resulting solution at 300 K is __.

[Use : Molar mass of urea = 60 g mol⁻¹; gas constant, R = 62 L Torr K^{-1} mol⁻¹ ; Assume, $\Delta_{mix}H = 0$, $\Delta_{mix}V = 0$]

Ans. (682)

13. The reaction of 4-methyloct-ene (**P**, 2.52 g) with HBr in the presence of (C₆H₅CO)₂O₂ gives two isomeric bromides in a 9 : 1 ratio, with combined yield of 50%. Of these, the entire amount of the primary alkyl bromide was reacted with an appropriate amount of diethylamine followed by treatment with eq. K₂CO₃ to given a non-ionic product **S** in 100% yield.

The mass (in mg) of **S** obtained is __.

[Use molar mass (in g mol⁻¹): H = 1, C = 12, N = 14, Br = 80]

Ans. (1791)

SECTION-4: (Maximum Marks: 12)

- This section contains **TWO** (02) paragraphs.
- Based on each paragraph, there are **TWO** (02) questions.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered in the designated place;

Zero Marks : 0 In all other cases.

"PARAGRAPH I"

The entropy versus temperature plot for phases α and β at 1 bar pressure is given. S_T and S_0 are entropies of the phases at temperatures T and 0 K, respectively.

The transition temperature for α to β phase change is 600 K and $C_{P,\beta} - C_{P,\alpha} = 1$ J mol⁻¹ K⁻¹. Assume $(C_{P,\beta} - C_{P,\alpha})$ is independent of temperature in the range of 200 to 700 K. $C_{P,\alpha}$ and $C_{P,\beta}$ are heat capacities of α and β phases, respectively.

14. The value of entropy change, $S_{\beta} - S_{\alpha}$ (in J mol⁻¹ K⁻¹), at 300 K is ___.

[Use : $\ln 2 = 0.69$

Given: $S_{\beta} - S_{\alpha} = 0$ at 0 K

Ans. (0.31)

"PARAGRAPH I"

The entropy versus temperature plot for phases α and β 1 bar pressure is given. S_T and S_0 are entropies of the phases at temperatures T and 0 K, respectively

The transition temperature for α to β phase change is 600 K and $C_{P,\beta} - C_{P,\alpha} = 1 \text{J mol}^{-1} \text{ K}^{-1}$. Assume $(C_{P,\beta} - C_{P,\alpha})$ is independent of temperature in the range of 200 to 700 K. $C_{P,\alpha}$ and $C_{P,\beta}$ are heat capacities of α and β phases, respectively.

15. The value of enthalpy change, $H_{\beta} - H_{\alpha}$ (in J mol⁻¹), at 300 K is _____. **Ans.** (300)

"PARAGRAPH II"

A trinitro compound, 1, 3,5 tris-(4-nitrophenyl) benzene, on complete reaction with an excess of Sn/HCl gives major product, which on treatment with an excess of NaNO₂/HCl at 0°C provides **P** as the product. **P**, upon treatment with excess of H₂O at room temperature, gives the product **Q**. Bromination of **Q** in aqueous medium furnishes the product **R**. The compound **P** upon treatment with an excess of phenol under basic conditions gives the product **S**.

The molar mass difference between compounds \mathbf{Q} and \mathbf{R} is 474 mol⁻¹ and between compounds \mathbf{P} and \mathbf{S} is 172.5 g mol⁻¹.

16. The number of heteroatoms present in one molecule of R is _____.
[Use: Molar mass (in g mol⁻¹): H = 1, C = 12, N = 14, O = 16, Br = 80, Cl = 35.5 Atoms other than C and H are considered as heteroatoms]
Ans. (9)

"PARAGRAPH II"

A trinitro compound, 1, 3,5 tris-(4-nitrophenyl) benzene, on complete reaction with an excess of Sn/HCl gives major product, which on treatment with an excess of NaNO₂/HCl at 0°C provides $\bf P$ as the product. $\bf P$, upon treatment with excess of H₂O at room temperature, gives the product $\bf Q$. Bromination of $\bf Q$ in aqueous medium furnishes the product $\bf R$. The compound $\bf P$ upon treatment with an excess of phenol under basic conditions gives the product $\bf S$.

The molar mass difference between compounds \mathbf{Q} and \mathbf{R} is 474 mol⁻¹ and between compounds \mathbf{P} and \mathbf{S} is 172.5 g mol⁻¹.

17. The total number of carbon atoms and heteroatoms present in one molecule of **S** is _____. [Use: Molar mass in g mol⁻¹]: H = 1, C = 12, N = 14, O = 16, Br = 80, Cl = 35.5 Atoms other than C and H are considered as heteroatoms

Ans. (51)

