

ALLEN

INChO-2026

PAPER SOLUTION

Prepared by Expert
Faculty Team of **ALLEN**

Congratulations to **NSEC Qualified Students**

Wishing You Success in INChO 2026

ALLEN Career Institute

Announces

ALLEN's
BOOT CAMP

For
OCSC (Orientation cum Selection Camp)

25th Feb. to 12th Apr. 2026

For Class: X & XI Only

CAMP HIGHLIGHTS

Theory Class will begin from 25th Feb 2026 to till OCSC in Online mode only.

Training and special mentoring by Experts of IChO and past year IChO Medalists.

Exposure to the level of competition in peer group Exclusive doubt counter available

Olympiad level problem discussion sessions

Practical Classes will be from 11th March to 20th March 2026 in Offline at Kota only.

Olympiad relevant handouts will be shared by faculties.

Better Problem Solving Techniques

A lifetime learning experience to have faculties round the clock

For more details & enrollment, visit: workshop.allen.ac.in

CALL NOW

+91-82090 93674, 9462031855, 78209 70800,
97854 87851, 89470 21905, 74258 68704, 85618 53186

WORKSHOP FEE
₹ 1000

INCHO-2026 (EXAMINATION)

(Held On Saturday 31th JANUARY, 2026)

CHEMISTRY

TEST PAPER WITH ANSWER

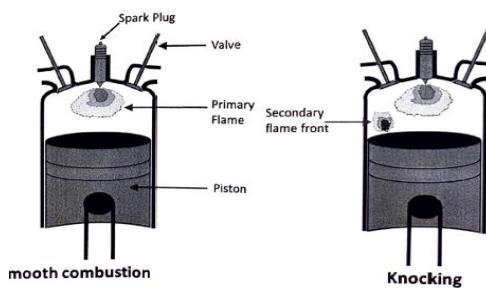
PAPER WITH SOLUTIONS

Problem-1

Fuel for Petrol Engines

Petrol is a common liquid fuel used for two and four-wheeler light passenger vehicles. It is a mixture of about 150 volatile hydrocarbons with carbon atoms between 4 to 12 per molecule. Petrol contains straight and branched-chain alkanes (paraffins), cyclic alkanes (naphthenes), unsaturated hydrocarbons with one double bond (olefins) and aromatic hydrocarbons, with an average chemical composition of $C_{8.26}H_{15.5}$. This problem will explore combustion of petrol and related fuels being used commercially in petrol engines. Some useful data :

Compound	n-octane(l)	Cyclohexane (l)	Isooctane (l)	Ethanol (l)
Density (g cm ⁻³)	0.70	0.77	0.69	0.79
$\Delta H^{\circ}_{\text{combustion}}$ (kJ mol ⁻¹)	-5470.3	-3918.6	-5461.0	-1366.8


PART A: Combustion in Petrol Engines

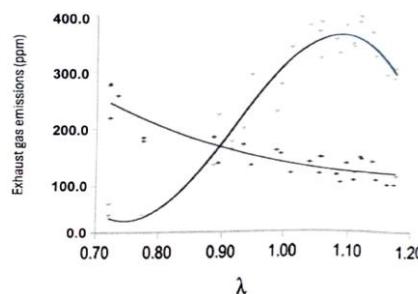
The combustion of petrol can be understood with octane as a model fuel.

1.1 Draw structures of all possible stereoisomer(s) of octane having two chiral centers, in the wedge-dash representation.

The combustion of fuel starts with a homolytic cleavage of a C-H bond in a hydrocarbon, forming alkyl radicals. These radicals can undergo rearrangement to form more stable radicals. If the radicals generated are unstable even after rearrangement, the fuel can burn at low temperatures. Among the alkyl radicals generated by the octane isomers during combustion, those formed by isooctane (2,2,4-trimethylpentane) are most stable, some of which are stabilized by rearrangement.

1.2. Draw the structure(s) of all probable alkyl radical(s) that are formed from isooctane including those after rearrangement. Identify the most stable free radical by circling its structure. In a petrol engine under certain conditions, some components of the fuel-air mixture forming less-stable free radicals may self-ignite without ignition by the primary flame front as shown in the diagram below. Such secondary flames outside the primary flame front create secondary heat and pressure waves. Multiple pressure waves in the cylinder can create shock waves and cause jerky movements of the piston. The shock waves also create a characteristic "pinging" sound, known as knocking. Knocking tendency of a fuel (causing jerky movements in vehicle) is quantified by octane number. The fuel that causes less knocking is considered better and is assigned a higher octane number.

1.3. Arrange the following hydrocarbons in ascending order of their knocking tendency.


methylcyclohexane, isooctane, n-octane, toluene (methylbenzene)

1.4. Estimate the stoichiometric amount of air (in g) required for the complete combustion of 100 cm³ of a liquid fuel mixture containing n-octane and cyclohexane [70:30, v/v assuming volumes are additive].

Write balanced equations for the combustion of each component. Assume composition of air (v/v) at NTP as: Argon (0.95%), Nitrogen (78.08%) & Oxygen (20.95%).

Air-fuel ratio (λ) is the relative stoichiometric ratio between the mass of air and the mass of fuel that are injected in the engine. When $\lambda = 1$, the combustion mixture in the engine contains a stoichiometric amount of air and fuel; values of $\lambda < 1$ signify fuel-rich mixtures, while $\lambda > 1$ correspond to air-rich mixtures. This ratio affects the composition of emitted gases from the engine.

Concentration values of two gases in a petrol engine exhaust as a function of λ are presented as two curves in the graph here.

1.5. If 20% excess air ($\lambda = 1.2$) is injected in a petrol engine for combustion of a fuel mixture containing octane (85% v/v), cyclohexane (5% v/v), 2-butene (5% v/v) and toluene (5% v/v), identify the gases emitted in the exhaust in significant concentrations (above 200 ppm).

Mark X for the correct option(s).

a) CO ₂	b) CO	c) Ar	d) NO _x
e) N ₂	f) O ₂	g) unburnt hydrocarbons (HC)	

PART B: Mixing Ethanol with Isooctane

Most governments have been imposing vehicle emissions regulations that are continually being tightened further. BS VI emission standards notified by the Government of India limit values of exhaust gases for two wheelers fitted with spark ignition engines as follows: CO (500 mg km⁻³), HC (100 mg km⁻³), NO_x (90 mg km⁻³).

(Reference: The Emission Standards for Bharat Stage VI (BS-VI), Ministry of Road Transport and Highways, May 2020).

Changing fuel compositions can address some of the emission concerns. Ethanol is one of the alternative transportation fuels which is available as a byproduct from agricultural sources.

1.6. Consider the liquid fuel for an engine is changed from isooctane (F₀) to a mixture containing 80% isooctane and 20% ethanol (v/v, assuming volumes are additive), known as F₂₀.
 (i) Estimate the difference in calorific values of these two fuels, C (F₂₀) – C (F₀), heat released per g.
 (ii) By what percent CO₂ emission is reduced on changing the fuel from F₀ to F₂₀ for the same distance covered by the vehicle? Assume 100% efficient combustion and the efficiency of engines in the two cases to be identical.

PART C: Ethanol Blended Petrol

Ethanol blended petrol in different proportions is being used in different parts of the world including India. E₈₅ is blend of 85% ethanol and 15% petrol, E₂₀ is 20% ethanol blended with 80% petrol and so on. The ignition temperature of fuel is the temperature at which it spontaneously ignites in atmospheric air without an external source of ignition. Certain facts associated with ethanol blended fuels are:

- F1.** Ethanol forms an azeotrope with water.
- F2.** Addition of double bonds to alkyl chain of a fuel mixture stabilizes some of its alkyl radicals.
- F3.** Ethanol molecules are inherently rich in oxygen.

F4. The ignition temperature of ethanol is 365 °C and that of petrol is 247 - 280 °C.

F5. Ethanol-blended petrol absorbs water from atmosphere.

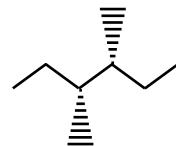
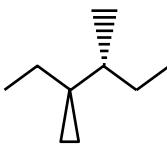
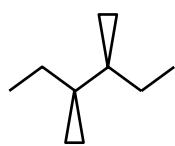
F6. Oxygen containing fuels inhibit formation of soot.

F7. Latent heat of evaporation of ethanol is much higher than that of octanes.

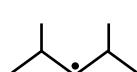
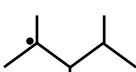
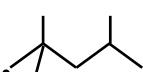
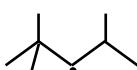
1.7. State which of the following statements are correct/ incorrect for petrol engines and write the fact/s

(F1-F7) which justify your answer.

S1. The E₂₀ blended fuel will exhibit lower knocking than E₀.




S2. Temperature of air fuel mixture in an engine at the start of combustion would be lower for E₈₅ than for E₂₀.

S3. E₈₅ fuel can be more damaging to the engine parts having metallic than E₂₀.

S4. E₈₅ fuel will result in more emissions of unburnt HC than E₂₀ fuel, at $\lambda = 1$.

S5. Emission of particulate matter is significantly increased with E₈₅.

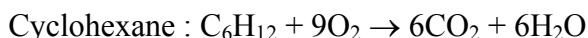
Sol. 1.1

1.2

Most stable

1.3 n-octane < Methylchlohexane < Isooctane < Tolune

(-20)


(75)

(100)

(120)

Octane number is written in bracket.

1.4 Balanced combustion equations :

Take 100 cm³ liquid fuel, 70 cm³ n-octane and 30 cm³ cyclohexane (volumes additive).

Densities (approx..) :

n-octane : 0.70 g cm⁻³

Cyclohexane : 0.77 g cm⁻³

Masses of components :

n-octane : $70 \times 0.70 \approx 49$ g

Cyclohexane : $30 \times 0.77 \approx 23.1$ g

Molar masses :

n-octane C₈H₁₈ : 114 g mol⁻¹

Cyclohexane C_6H_{12} : 84 g mol^{-1}

Moles :

$$\text{n-octane : } \frac{49}{114} \approx 0.429 \text{ mol}$$

$$\text{Cyclohexane : } \frac{23.4}{84} \approx 0.278 \text{ mol}$$

From the balanced equations, O_2 needed :

n-octane : 12.5 mol O_2 per mol fuel

$$\Rightarrow 0.44 \times 12.5 = 5.3625 \text{ mol } O_2$$

Cyclohexane : 9 mol O_2 per mol fuel

$$\Rightarrow 0.278 \times 9 = 2.5 \text{ mol } O_2$$

$$\text{Total } O_2 \text{ required} = 5.3625 + 2.5 = 7.8625 \text{ mol.}$$

Air composition (v/v) : 20.95% O_2 , 78.08% N_2 , 0.95% Ar.

$$\text{Moles of air} = 7.8625 \times \frac{100}{20.95} = 37.53 \text{ mol.}$$

Average molar mass of dry air with this composition is about 28.96 g mol^{-1} .

$$\text{Mass of air required} = 35.7 \times 28.96 \approx 1086.864 \text{ gm.}$$

Answer : Stoichiometric air required for complete combustion of 100 cm^3 of the given fuel mixture is about $1.0 \times 10^3 \text{ g}$ ($\approx 1.086 \text{ kg}$).

1.5 CO_2 is major product in combustion while most of nitrogen remains unreacted.

Final Answer

CO_2 and N_2

$$\text{1.6 (i) Calorific value of (isoctane) } C_{(F_0)} = \frac{5461}{114} = 47.9 \text{ kJ/gm}$$

Calorific value of $C_{(F_{20})}$ i.e. 80% isoctane, 20% ethanol

let 100 ml $C_{(F_{20})}$

$$\text{mass of ethanol} = 20 \times 0.79 = 15.8 \text{ gm}$$

$$\text{moles} = \frac{15.8}{46} = 0.34$$

$$m_{\text{iso-octane}} = 80 \times 0.69 = 55.2 \text{ gm}$$

$$\text{moles} = \frac{55.2}{114} = 0.484$$

$$\text{Calorific value of } C_{(F_{20})} = \frac{5461 \times 0.484 + 1366.8 \times 0.34}{55.2 + 15.8} = \frac{2643.12 + 464.71}{71} = 43.72 \text{ kJ/gm}$$

$$\left| C_{F_0} - C_{(F_{20})} \right| = 47.9 - 43.72 = 4.18 \text{ kJ/gm}$$

$$\text{(ii) CO}_2 \text{ from } F_0 = \frac{8 \times 44}{5461} = 0.0644 \text{ gm/kJ}$$

in $F_{20} \rightarrow 43.72 \text{ kJ/gm}$

$$\text{in 1 gm } W_{\text{isoctane}} = 1 \times \frac{55.2}{71} = 0.777 \text{ gm}$$

$$W_{C_2H_5OH} = 1 - 0.777 = 0.223 \text{ gm}$$

$$\begin{aligned} W_{CO_2} \text{ from 1 gm } F_{20} &= \frac{0.777}{114} \times 44 \times 8 + \frac{0.223}{46} \times 44 \times 2 \\ &= 2.34 + 0.426 = 2.766 \text{ gm} \end{aligned}$$

$$CO_2 \text{ from } F_{20} = \frac{2.766}{43.72} = 0.06399$$

$$\% CO_2 \text{ reduced} = \frac{0.0644 - 0.06399}{0.0644} \times 100 = 0.636\%.$$

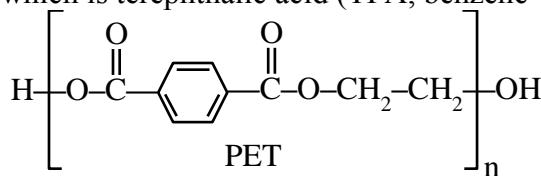
1.7 S1 → Correct (due to fact F2)

S2 → Correct (due to fact F7)

S3 → Correct (due to fact F5)

S4 → Correct (due to fact F3 & F6)

S5 → Correct (due to fact F3 & F6)


Problem Number-2

Polymer Recycling

Polymer recycling aims at recovering and reusing polymers to reduce waste as well as to obtain new raw materials. This is achieved through mechanical or chemical recycling. In mechanical recycling, polymers are melted and reshaped. In chemical recycling, polymers are broken down into molecular building blocks (monomers) for creating new materials or getting back the same material. Both approaches aim to create a circular economy or give value added products. Here we look at two polymers.

Part A. Polyethylene terephthalate

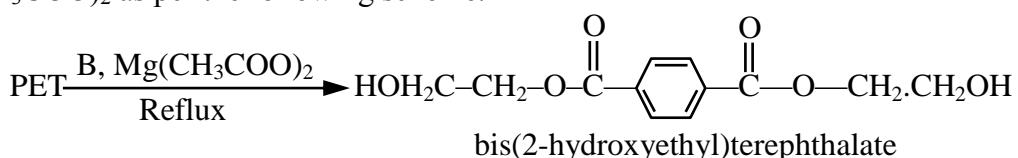
Polyethylene terephthalate (PET) is chemically recycled by cleaving its ester bonds, converting it into its monomers one of which is terephthalic acid (TPA, benzene – 1, 4-dicarboxylic acid).

The ester bonds can be cleaved using various methods, two of which are :

1. **Neutral hydrolysis** : PET is broken down at high temperatures and high pressures in the presence of water or steam.

2. **Acid or alkaline hydrolysis** : PET is broken down at relatively lower temperature and moderate pressures in presence of acids (like H_2SO_4) or bases (like $NaOH$) as catalysts.

Consider a sample of 1 kg PET pieces heated with aqueous $NaOH$ (molar equivalents $> 2n$ in PET).


2.1 (i) Write the structure of the products obtained when the reaction with NaOH is complete.
(ii) From the reaction mixture, one can separate out two monomers which can be reacted together to produce fresh PET. One of these compounds is a solid at room temperature, and other is a water-miscible liquid (B.P. 196°C). From the following list of possible processes (I-IX) identify the sequence required to obtain the two monomers from the above reaction mixture.

(I) filtration
(II) distillation at 100°C and pressure < 1 atm
(III) solvent extraction with toluene
(IV) treatment with NaHCO_3 (aq)
(V) addition of water
(VI) treatment with I_2 (s)
(VII) treatment with H_2SO_4 (aq)
(VIII) distillation at 100° C and 1 atm
(IX) heating in Inert gas atmosphere

(11) heating in inert gas atmosphere
 Write the process numbers in correct sequence in the second column in the given table (assuming that each separation step is 100% efficient). For each step, write the constituents of mixture on which the process is to be carried out in third column. In the fourth column, write the compound(s) which is/are separated out in that process.

S.No.	Process No. (I-IX)	Constituents of Mixture on which the process is carried out	Compound(s) separated out after the process (if applicable)
1.			
2.			
3.			
4.			
5.			
6.			

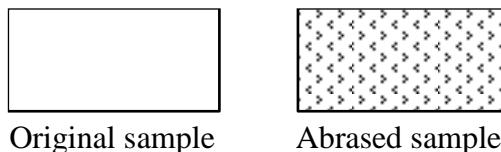
In a third method, PET is boiled (refluxed) with a liquid B ($3n$ equivalent) in presence of $\text{Mg}(\text{CH}_3\text{COO})_2$ as per the following scheme.

In a fourth process, PET pieces are heated with excess liquid ethanolamine (2-aminoethanol, 4n equivalents) in presence of $Zn(CH_3COO)_2$.

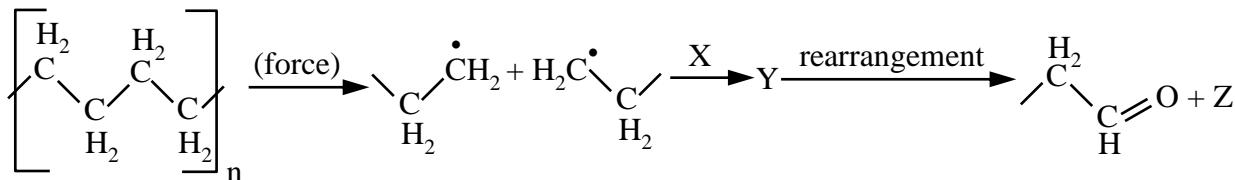
2.3 Write the structure(s) of the product(s) obtained after completion of the reaction. The four methods described above can be used (with appropriate subsequent separation and reaction steps) to obtain fresh PET.

2.4 Among the four depolymerization pathways, it is possible to obtain the PET polymer back with least amount of chemical waste/by products as well as with least energy input by :

[Mark X against the correct option]


- (a) hydrolysis with H_2O
- (b) hydrolysis with NaOH (aq)
- (c) treatment with B in presence of $\text{Mg}(\text{CH}_3\text{COO})_2$
- (d) treatment with ethanolamine in presence of $\text{Zn}(\text{CH}_3\text{COO})_2$

Part B : Polythene


Polythene is usually recycled mechanically. The quality of recycled products depends a lot on the purity of polythene.

White polythene is inert to many substances (gases, water, acids, bases, oils, etc), mechanical tension, compressions or abrasion can cause chemical changes in it. When the molecules of polythene are pulled apart, the force may break some bonds. When a polythene sample abraded in presence of air was studied using spectroscopy, it showed presence of $-\text{CHO}$ functional groups. Aldehydes can also undergo slow oxidation in air via free-radical pathways.

Sample of original and abraded (damaged) polythene sheets are given below.

The formation of aldehydes during mechanical abrasion can take place through the following pathway

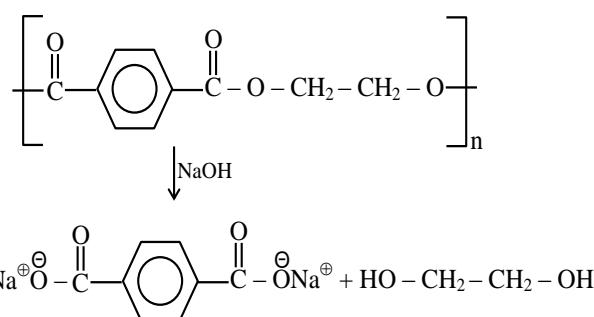
2.5 Draw the structures of the species X, Y, Z.

2.6. The abraded plastic looks less transparent than the fresh polymer. This is because (Mark X against the correct option(s)):

- (a) the carbonyl groups change the refractive index of plastic in some regions.
- (b) the carbonyl groups enhance light absorption by polymer across the whole visible spectrum.
- (c) the carbonyl groups attract more dust particles to the plastic as these are positively charged.
- (d) during abrasion, the molecular arrangements/packing change, increasing scattering of light through the sample.

Polythene is recycled by melting the polymer (in ambient air) and recasting it into required shape(s) on cooling.

2.7. Assuming that there is no external substance added during melting, the alkyl chains having $-\text{CHO}$ groups can affect recycling of abraded polythene by (Mark X against the correct option(s))

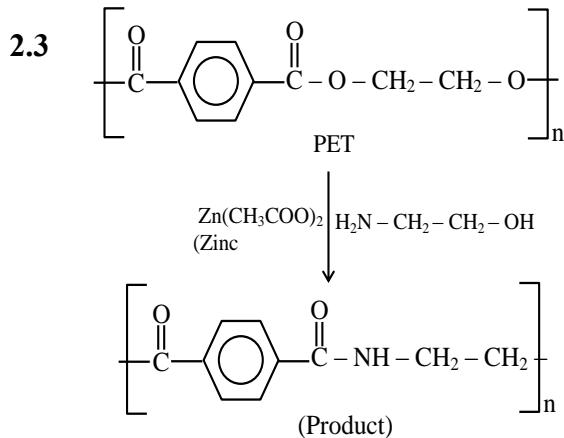

- (a) decreasing the melting point of polythene.
- (b) causing free-radical driven cleavage in polymer chains.
- (c) increasing the viscosity of molten polymer.
- (d) decreasing the branching in polymer.

2.8. Which of the following limitations of polymer recycling apply to mechanical and chemical recycling. Mark X in the appropriate cells.

		Mechanical Recycling	Chemical recycling
(a)	Lower quality plastic products		
(b)	By-products generated as waste during recycling		
(c)	Limited number of recycling cycles due to change in composition after every cycle		

Sol. 2.1

(i)



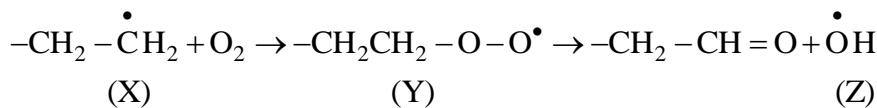
(ii)

S.no.	Process no. (I-IX)	Constituents of mixture on which the process is carried out	Compound(s) separated out after the process (if applicable)
1	VII	Terephthalic acid + Ethylene glycol	
2	I	Aq. Ethylene glycol	Terephthalic acid
3	VIII	Ethylene glycol	H ₂ O
4			
5			
6			

2.2 (i) $\text{HO} - \text{CH}_2 - \text{CH}_2 - \text{OH}$ (ii) (a) Lewis acid catalyst
(iii) (c) Nucleophilic substitution reaction.

23 $\left[\begin{matrix} 0 & \underline{\quad} \end{matrix} \right]$ 0

2.4 (a) Water hydrolysis needs very high temperature and pressure and gives terephthalic acid + ethylene glycol, which must be converted back to PET through extra energy-intensive steps.


(b) NaOH hydrolysis forms sodium terephthalate salt, so you need neutralisation and additional processing, creating extra chemical waste.

(c) Glycolysis with a glycol and magnesium acetate gives BHET, a direct PET precursor, with low by products and lower energy demand.

(d) Ethanolamine (aminolysis) makes amide products that cannot be directly repolymerised to PET, so it is not a closed recycling loop.

Hence, option (c) gives the least waste and least energy for getting PET back.

2.5 $X = O_2$

$Y = \text{Alkyl peroxy radical}$

$Z = \text{Hydroxyl free radical}$

2.6 Correct answer is (d) :

(Options (a) and (b) assume significant formation of carbonyl groups that would alter refractive index or strongly absorb visible light across the spectrum; simple mechanical abrasion normally doesn't create enough chemical change to cause that effect.

Option (c) about dust attraction and charge is not the primary optical reason for the reduced transparency.)

2.7 Correct options (a) and (b):

Abrasion plus heating can create aldehyde ($-\text{CHO}$) groups on polyethylene chains due to oxidation. These groups make the chains more prone to free-radical reactions during melting, which breaks the long chains (chain scission).

Shorter chains mean:

Lower molecular weight \rightarrow slightly lower melting point \rightarrow (a) correct

Chain breaking via radicals \rightarrow (b) correct

As cross linking agents are not added molecular mass won't increase and only Chain scission will take place and Shorter chains also flow more easily, so viscosity decreases (not increases) \rightarrow (c) wrong.

Formation of $-\text{CHO}$ groups does not remove existing branches \rightarrow (d) wrong.

2.8

		Mechanical Recycling	Chemical recycling
(a)	Lower quality plastic products	×	
(b)	By-products generated as waste during recycling	×	
(c)	Limited number of recycling due to change in composition after every cycle	×	

Problem-3**CaO production**

Calcium carbonate (CaCO_3) is found in rocks as minerals viz. calcite and aragonite, limestone, eggshells, etc. It has medical use as calcium supplement and as an antacid. It is used on large scale in construction industry as a building material and as an ingredient of cement.

3.1. CaCO_3 can be prepared by mixing calcium oxide and water followed by passing $\text{CO}_2(\text{g})$. Write the balanced equations for the two reactions.

When CaCO_3 is heated in a closed vessel, the following heterogenous equilibrium is attained

3.2. Consider K_c is the equilibrium constant where c indicates the concentrations of reacting species in moles per litre. Calculate K_c for the equilibrium at 835°C and a CO_2 partial pressure of 0.236 atm, assuming ideal gas behaviour.

3.3. Using the values given in the table below, calculate

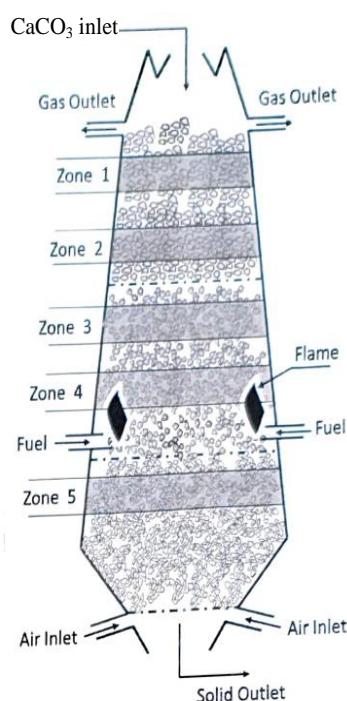
(i) the standard free energy change of reaction 1 at 25°C and 850°C . (Assume that the enthalpy and entropy values are temperature independent)

(ii) the temperature below which $\text{CaCO}_3(\text{s})$ will not convert to $\text{CaO}(\text{s})$ in presence of CO_2 at a partial pressure of 1 atm.

Thermodynamic Data at 1 atm and 25°C		
Substance	$\Delta H^\circ_f(\text{kJ mol}^{-1})$	$S^\circ(\text{J K}^{-1} \text{ mol}^{-1})$
$\text{CO}_2(\text{g})$	-393.5	213.6
$\text{CO}_3^{2-}(\text{aq})$	-676.3	-53.1
$\text{Ca}^{2+}(\text{aq})$	-542.9	-55.2
$\text{CaCO}_3(\text{s})$	-1206.9	92.9
$\text{CaO}(\text{s})$	-635.6	39.8
$\text{CO}_2(\text{aq})$	-412.9	121.3

3.4. Consider a 10 kg block of CaCO_3 taken in a 20 L closed container and the system is allowed to reach equilibrium at 600 °C. In the table below, certain modifications are listed. For each of the modification in Column I, write the relative change/s (from the list A-E) observed in the modified system at equilibrium with respect to the original 20 L system.

- A) The amount of CaO (s) increases.
- B) The amount of CO_2 (g) increases.
- C) No change in the system.
- D) The amount of CaO (s) decreases.
- E) The amount of CO_2 (g) decreases.


Modification	Observed relative change/s (A-E)
1] Temperature of the 20 L container is increased.	
2] The same amount of CaCO_3 is taken in a 40 L container at 600 °C.	
3] Half of CaCO_3 is removed from the (original) 20 L container at 600 °C	
4] Finely powdered 10 kg CaCO_3 solid is taken in another 20 L container at 600 °C.	

A schematic diagram of a furnace for conversion of limestone to lime is given here.
 CaCO_3 , Inlet Gas Outlet Gas Outlet

3.5. Write correct symbol ($>$, $=$, or $<$) comparing average temperatures (T) of Zone 3 and 4 in the space below and mark X against options (a) - (d) supporting your answer.

$T(\text{zone 3})$ _____ $T(\text{Zone 4})$, due to:

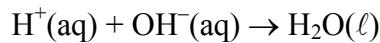
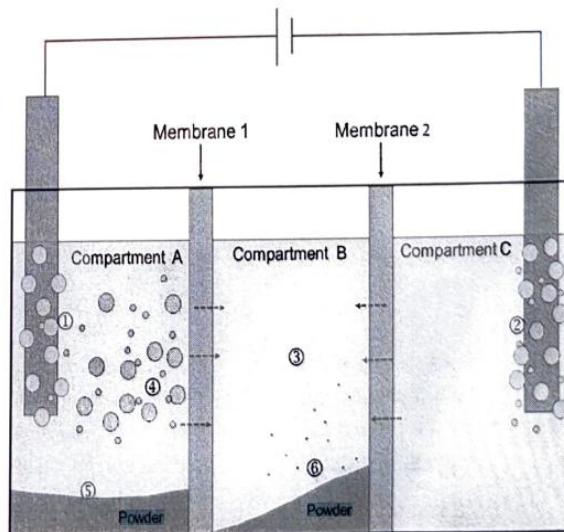
- (a) downward movement of CaCO_3 (s)
- (b) positive ΔH of reaction 1
- (c) low specific heat of CaCO_3 (s)
- (d) upward flow of air

3.6. Identify the zones in the diagram where

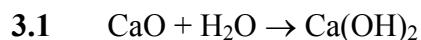
- A) CO_2 pressure is the lowest.
- B) CaCO_3 is the hottest.
- C) maximum percent conversion of CaCO_3 takes place.
- D) solid has maximum percentage of CaO .
- E) the gaseous mixture has highest pressure.

Portland cement is made up of four main components designated as C_2S (Ca_2SiO_3), C_3S (Ca_3SiO_5), C_3A and C_4AF where C stands for calcium oxide, S for Silica, A for Alumina and F for iron(III) oxide.

3.7. Write balanced equation for the formation of C_4AF starting from CaO and appropriate oxides.

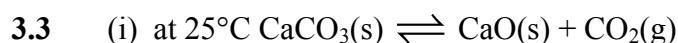


Cement production is the largest single industrial emitter of CO_2 (~ 8% of global CO_2) as 1 kg of cement produced releases 1 kg of CO_2 in atmosphere. Reduction of CO_2 emissions from cement manufacturing will require reducing or utilising the CO_2 from decomposition of CaCO_3 and from combustion of fuels in the CaO furnace.

Some of these emissions can be reduced by using $\text{Ca}(\text{OH})_2$ partly in place of CaO as input in cement production, which produces hydrated phases of the cement components.


3.8. Write balanced equation for the formation of hydrated phase of C_3A starting from calcium hydroxide and appropriate oxides.

An electrochemical set up uses CaCO_3 and produces $\text{Ca}(\text{OH})_2$ along with gases that can be separately collected and utilized. This setup shown in diagram here consists of three compartments separated by two ion-selective membranes. $\text{CaCO}_3(\text{s})$ is added to one of the compartments and all compartments are filled with water.

Different reactions take place in different regions in the three compartments. For example, in region labelled by 3, the predominant reaction is:


3.9. (i) Write the balanced chemical equations for predominant reaction in regions 1, 2, 4, 5 and 6.
(ii) Write the overall reaction for the process taking place in the electrochemical setup.

3.2 $K_p = P_{\text{CO}_2} = 0.236$

$K_p = K_c (RT)$

$$\Rightarrow K_c = \frac{K_p}{RT} = \frac{0.236}{0.082 \times 1108.15} = 2.597 \times 10^{-3} \text{ M}$$

$$\Delta G_r^\circ = \Delta H^\circ - 298.15 \Delta S^\circ$$

$$\begin{aligned} \Delta G_r^\circ &= \Delta H_f^\circ(\text{CaO}(\text{s})) + \Delta H_f^\circ(\text{CO}_2(\text{g})) - \Delta H_f^\circ(\text{CaCO}_3(\text{s})) \\ &= (-635.6 - 393.5 + 1206.9) = 177.8 \text{ kJ/mol.} \end{aligned}$$

$$\Delta S_r^\circ = \sum S_p^\circ - \sum S_R^\circ$$

$$= 39.8 + 213.6 - 92.9 = 160.5 \text{ J/mol-K.}$$

$$\Delta G_r^\circ \text{ (at } 25^\circ\text{C}) = \Delta H_r^\circ - 298.15 \times \Delta S_r^\circ$$

$$= 177.8 - \frac{298.15 \times 160.5}{1000} = -129.9469 \text{ kJ/mol.}$$

at 850°C

$$\begin{aligned} \Delta G_r^\circ &= \Delta H^\circ - 1123.15 \Delta S^\circ = 177.8 - \frac{1123.15 \times 160.5}{1000} \\ &= -2.465 \text{ kJ/mol.} \end{aligned}$$

(ii) $K_p = P_{\text{CO}_2} = 1 \text{ atm}$

$$\Delta G_r^\circ = -RT \ln K_p = 0$$

$$\Delta G = \Delta H - T\Delta S \Rightarrow T > \frac{\Delta H}{\Delta S}$$

$$T = \frac{\Delta H}{\Delta S} = \frac{177.8}{160.5} \times 1000 = 1107.788 \text{ K.}$$

(1) Ans. A, B

On increasing temperature reaction proceed in forward direction.

(2) Ans. A, B

On increasing volume equilibrium shift in towards more number of moles i.e. forward direction.

(3) Ans. C

$\text{CaCO}_3(\text{s})$ having no effect on equilibrium.

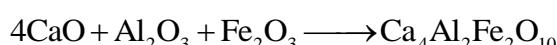
(4) Ans. C

$\text{CaCO}_3(s)$ having no effect on equilibrium.

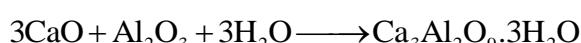
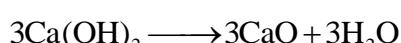
3.5 Zone 3 < Zone 4

a, b, d

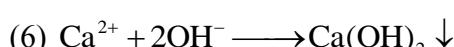
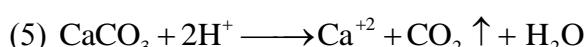
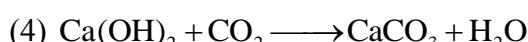
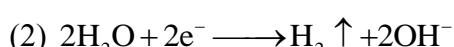
3.6 (A) \rightarrow Zone-5

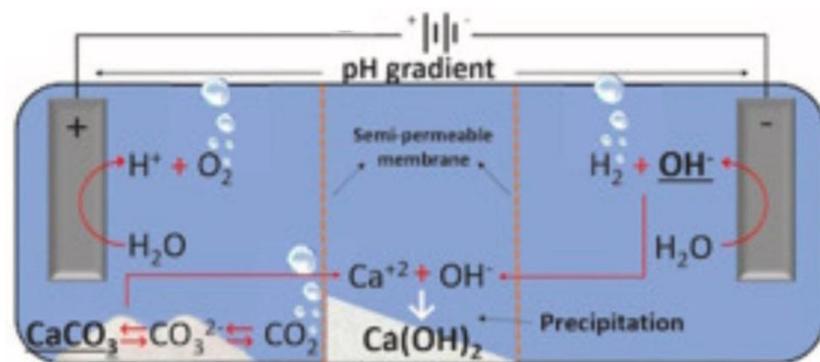

(B) \rightarrow Zone-3

(C) \rightarrow Zone-4

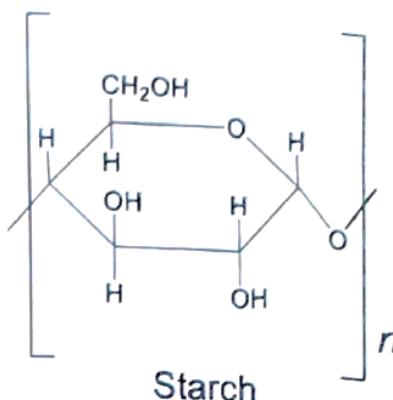


(D) \rightarrow Zone-5

(E) \rightarrow Zone-1





3.7 $\text{Ca}_4\text{AF} = 4\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{Fe}_2\text{O}_3$


3.8 $\text{C}_3\text{A} = 3\text{CaO} \cdot \text{Al}_2\text{O}_3$

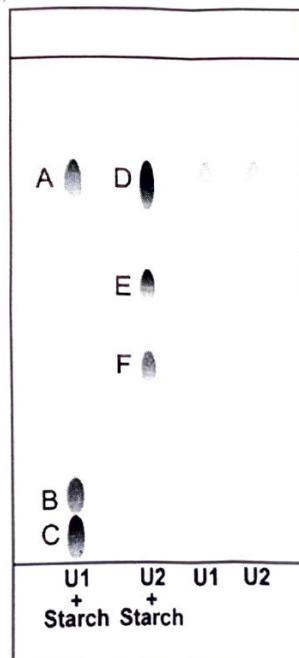
3.9 (i) (1) $\text{H}_2\text{O} \longrightarrow \frac{1}{2}\text{O}_2 \uparrow + 2\text{H}^+ + 2\text{e}^-$


(ii) $2\text{CaCO}_{3(s)} + 4\text{H}_2\text{O}_{(\ell)} \longrightarrow 2\text{Ca}(\text{OH})_{2(s)} + 2\text{H}_2 \uparrow + \text{O}_2 \uparrow + 2\text{CO}_2 \uparrow$

Problem-4

Urinary Amylase

Amylase is an enzyme that hydrolyses starch into smaller carbohydrates such as glucose, maltose, maltotriose (containing 3 glucose units), and oligosaccharides (containing a few units of glucose). Over time, amylase may also break oligosaccharides, maltotriose, etc into glucose units. It is present in plant and animal bodies supporting starch metabolism. Very small concentrations of amylase or other enzymes may be found in human and animal urines.

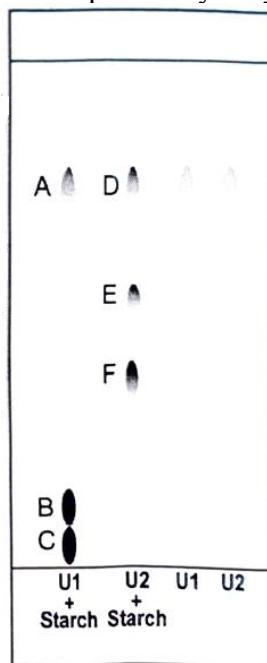

4.1 Draw the structure of the cyclic form of maltose with proper stereochemistry. Note : Do not use Fischeer projection.

In human and animals, amylase is significantly produced in the pancreases and used in the intestinal tract to digest food. However, if the pancreases is diseased or injured, amylase may get into blood and later in urine. Thus, an increased level of amylase in urine is an indicator of pancreatic dysfunction.

In a biochemical training course, students were trying different analytical method for urine analysis. Urine samples were obtained from two persons, one of whom was having-pancreatic dysfunction. These urine samples were diluted 10 times and the diluted samples U1 and U2 were given to three students, who used different approaches to analyze the sample

Student 1 : To 10 ml each of U1 and U2 in two test tubes, he added 2 ml of 1% starch solution. After keeping these mixtures for 10 minutes, he added 2 ml of Tollen's reagent and placed the test tubes in a hot water bath. In 30 minutes, both test tubes developed a silver mirror.

Student 2 : She followed the following steps:



- (i) Took 5 ml of U1 and U2 each in two test tubes and added 1 ml of 1% starch solution each.
- (ii) After 10 minutes, she these two mixture (U1 + starch; U2 + Starch) and spotted these at base line on a TLC plate coated with silica gel. She also spotted U1 and U2 on the TLC plate.
- (iii) She ran the chromatogram using butanol-water mixture as eluent, with small amount of acetic added (to enhance miscibility of butanol in water)
- (iv) She dried the plate and then dipped it in 0.1% AgNO_3 solution, by a dip in 2M NaOH solution. The plate turned completely brownish black.
- (v) She dipped this brownish-black plate in a 1 M $\text{Na}_2\text{S}_2\text{O}_3$ solution. Most of the colour on the plate disappeared except for few spots which are shown here.

4.2

- (a) For the positive Tollen's test observed by Student 1 (in test tube), write a balanced chemical equation for reaction of one of the components of urine-starch mixture with the Tollen's reagent. Draw the structures of the components and products with correct stereochemistry.
- (b) Write balanced chemical equation(s) for the reaction(s) which took place during Step iv of the procedure done by Student 2 causing grey-black colouration all over the TLC plate.
- (c) Write balanced chemical reaction which led to the disappearance of the black color from most regions of the TLC plate in Step v.
- (d) Spots B and E correspond to oligosaccharides and maltose, respectively. Write balanced chemical equation for the reaction(s) responsible for the formation of the coloured spot for maltose in the TLC plate.
- (e) Identify the compounds in the reaction mixture responsible for the spots A, D, F in the TLC plates.
- (f) In the TLC plate, the sequence and positions of spots are consistent with (mark X against the correct option/s):
 - (A) Compounds with more -OH groups having higher mobility in the eluent (mobile phase) than compounds with fewer -OH groups.
 - (B) Compounds with more -OH groups having lower affinity with silica gel (stationary phase) than compounds with fewer -OH groups.
 - (C) Increased mobility of compounds with increased number of -OH groups per unit molar mass.
 - (D) Lower mobility of larger carbohydrate molecules than smaller ones.

Student 3 : She followed Steps i-iii as student 2 but after running the TLC, dipped the TLC plate in a mixture of conc. sulphuric acid with phenol. She also got the same spots but their colour intensities were different from the TLC obtained by student 2. She could recall that (i) colour intensity of a spot would approximately depend on the amount of coloured substance(s) present in it and (ii) volume of each solution placed initially on the TLC plate may vary.

4.3 (a) The colour of the maltose spot after treatment of the TLC plate with the phenol-acid mixture was due to a compound Z (molecular formula: $C_{18}H_{14}O_4$). Before formation of Z, an intermediate Y ($C_6H_6O_3$) was formed at the spot region. Write the structures of Y and Z.

(b) Consider $I(S_L)$ represents the light absorption intensity of spot S_L . The ratio $I(D) : I(E)$ in TLC of student 3 was lower than in TLC of student 2. Write the balanced equation for the reaction that took place on TLC of student 3 which caused decrease in the intensity ratio $I(D) : I(E)$

(c) Intensity ratio of spot I(F) : I(B) in TLC of student 3 : (Mark X against the correct statement(s))

(A) would be always higher than ratio of spots in TLC of student 2 because of the same reaction mentioned in 4.3 (b).

(B) would be always lower than ratio of spots in TLC of student 2 because of a chemical process different from that mentioned in 4.3 (b).

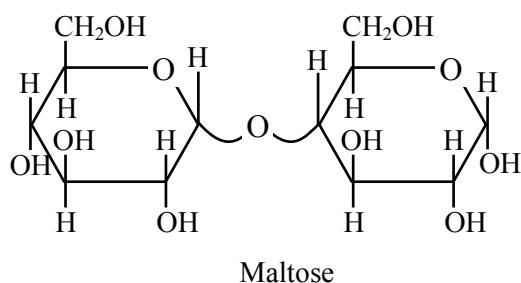
(C) cannot be compared with ratio of spot in TLC of student 2 as all these spots may be obtained by spotting different volume of sample mixtures.

4.4. Which of the two urine samples came from the patient with pancreactic dysfunction.

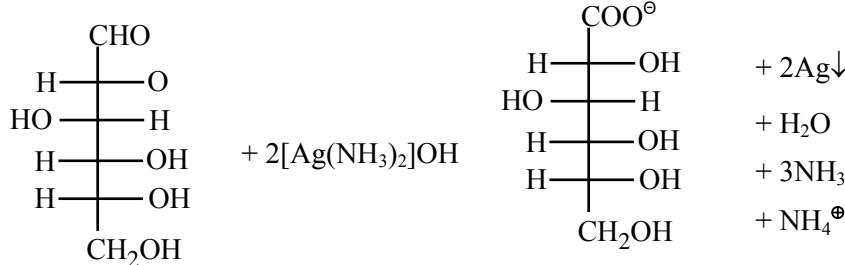
(A) U1 (B) U2

4.5. In this experiment, urine samples (without starch) were spotted on the TLC plates to (Mark X against the correct box(es)):

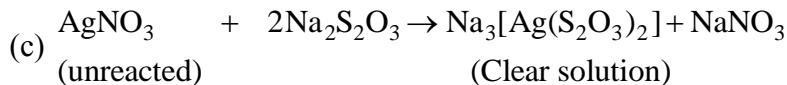
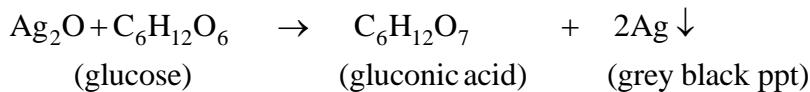
(A) ensure that the urine samples do not have identical compositions.


(B) identify any substances in urine which can lead to wrong interpretations from the analysis of urine starch mixture.

(C) identify reference spots for the urinary amylase in the TLC.


(D) check if any amount of glucose or starch is already present in the urine.

Sol.

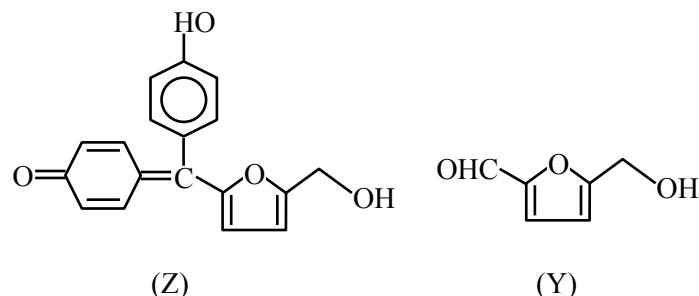
4.1

4.2 (a)

(b)

(d) Amylase + Starch \rightarrow Oligosaccharide (Maltose)

Maltose + Tollen's reagent → Silver mirror


(e) A, D – Glucose

F – Maltotriose

C – Starch

(f) D – Because if number of OH increases, it is adsorbed more by silica gel, whereas if number of OH decrease it travels more with Eluent

4.3 (a)

4.4 (B) U2 – Since it contains amylase which hydrolyzes starch into smaller units

4.5 (D)

Problem-5

A purple haze

Iodine is a purple-black crystalline solid at room temperature that has a unique ability to sublime into a violet-purple vapour.

Iodine was accidentally discovered by French chemist Bernard Courtois while preparing potassium nitrate for gunpowder. He took seaweed ash and mixed it with sulfuric acid. The mixture gave off purple vapour, which then formed shiny purplish-black crystals on the sides of the vessel. Courtois had discovered solid iodine.

5.1 The ground-state electronic configuration of iodine atom is represented by (Mark X against the correct answer).

(a) $[\text{Ar}]3\text{d}^{10}4\text{s}^24\text{p}^5$ (b) $[\text{Xe}]5\text{d}^{10}6\text{s}^26\text{p}^5$ (c) $[\text{Kr}]4\text{d}^{10}5\text{s}^25\text{p}^5$ (d) $[\text{Ar}]4\text{d}^{10}5\text{s}^25\text{p}^5$

Part A : Extraction of Iodine

Iodine discovery had a profound impact on medical practice. Many commercial uses evolved, including as a disinfectant, in pharmaceuticals, as a catalyst, pigments for ink, etc. Radioactive isotopes of iodine are today used to treat thyroid cancer.

Elemental iodine is not naturally found in its free state. It is found in seaweeds as iodine (I^-), and in caliche (saltpetre deposits) and associated groundwaters as iodate (IO_3^-).

5.2 Write the balanced chemical equation(s) of the reaction(s) which produced iodine in the accidental discovery by Bernard Courtois.

To meet the growing market demand, extraction of iodine from natural resources has grown, with Chile and Japan as the leading producers. The commercial recovery of iodine depends on the source. Two of the methods are given below :

Method 1 (From iodates) : To heaps of Chilean saltpetre containing trace amounts of iodates, water is poured to dissolve the saltpetre and the iodate. After crystallizing out nitrate salts, the mother liquor is collected, concentrated and divided into two parts.

- i. One part of the concentrate is first reduced with slight excess of sodium bisulphite to give iodide.
- ii. The solution obtained in step i is then mixed with the remaining concentrate to yield iodine.

5.3 Write balanced ionic equations for the two steps in the production of iodine from iodate.

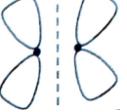
5.4 Write the oxidation number of all iodine species in the above reaction mixture.

5.5 The nature of solution in step ii after iodine formation is : (Mark X against the correct answer)

Method 2 (From Iodide) : Iodide solution from natural sources is first treated with aqueous copper sulphate and ferrous sulphate. The white solid that precipitates out is filtered, washed with water, dried, and finely ground. This purified white solid is then heated with potassium carbonate solution to give potassium iodide solution and a red-brown precipitate. The precipitate is filtered off and the solution is oxidized with sodium dichromate and sulfuric acid to liberate iodine.

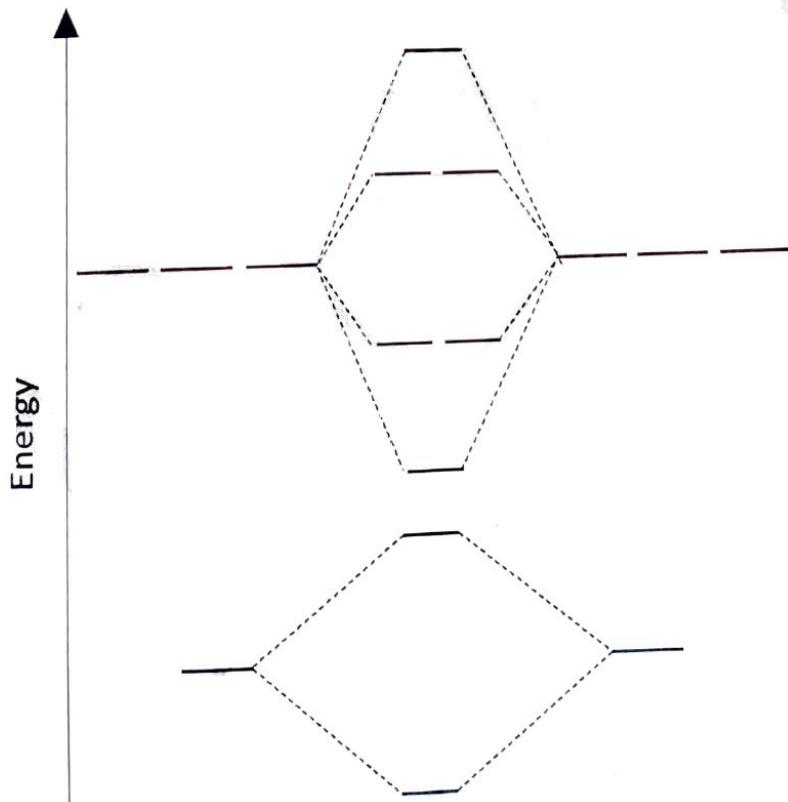
5.6 Write balanced chemical equations for the three steps described in Method 2.

Common table salts is "iodised" by the addition of potassium iodide or iodate. In a experiment, 50 g of iodised salt (containing iodate) was dissolved in 250 mL water. To 50 mL of this salt solution taken in a 250 mL conical flask, 2 mL of 2 M sulphuric acid and 5 mL of 0.6 M potassium iodide solution were added. The yellow-brown solution obtained was titrated against 0.002 M sodium thiosulfate until solution colour in the flask became very pale. Then 1 mL of starch indicator was added, and the titration was continued till the dark blue-black colour completely disappeared. The burette reading was 12.4 mL.


5.7 Write balanced chemical equations for the reactions involved in titration and calculate the iodine content (in mg) per kg of salt.

Part-II : Bonding and Colour of Iodine

Iodine exists as a highly coloured diatomic molecule and the colour arises from an electronic transition between the molecular orbitals (MOs) of iodine.

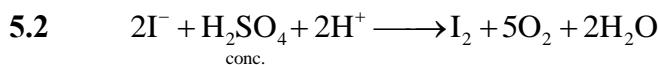
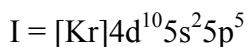

5.8 Assign labels to appropriate MO shape of I_2 molecules arising from the valence shell atomic orbitals (AOs) of two iodine atoms. Take z-axis as the internuclear axis. Four of the eight labels are given :

σ_{5s} , σ^*_{5s} , π_{5px} , π_{5py}

Orbital shape				
Label				

Orbital shape				
Label				

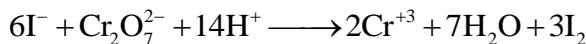
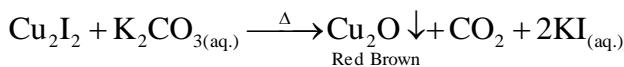
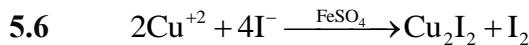
5.9 The diagram given below shows relative energies of some of the valence shell AOs of iodine combining to form MOs of I_2 . Label the MOs of I_2 and fill in the electrons in MOs.

5.10 The violet colour of iodine vapour is a result of the excitation of electron(s) between molecular orbitals. Identify the MOs involved in this electronic transition in initial and final state.

5.11 Iodine has poor solubility in water, but solubility increases in KI solution due to formation of the triiodide ion I_3^- . Identify the AO of I^- and MO of I_2 which combine to form the HOMO in triiodide ion.

Sol.




5.1 (C)

5.4

	O.N. of Iodine
IO_3^-	+5
I^-	-1
I_2	0

5.5 (a) Acidic

50 ml solution

gm equivalent of I_2 = Hypo

$$n_{I_2} \times 2 = 2 \times 10^{-3} \times \frac{12.4}{1000} \times 1$$

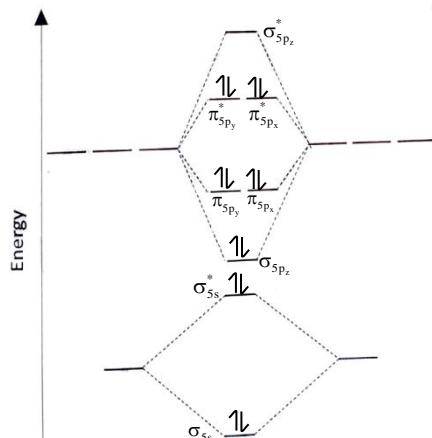
$$n_{I_2} = 12.4 \times 10^{-6} \text{ moles}$$

$$n_{KIO_3} = \frac{1}{3} \times n_{I_2} = \frac{12.4}{3} \times 10^{-6}$$

$$W_{\text{iodine}} = \frac{12.4}{3} \times 10^{-6} \times 127$$

$$= 524.93 \times 10^{-6} \text{ gm}$$

total solution is 250 ml containing 50 gm salt.

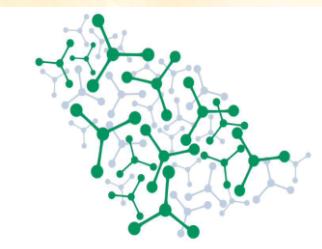

$$W_{\text{iodine in 50 gm salt}} = 524.93 \times 5 \times 10^{-6} \text{ g}$$

$$\text{wt. of iodine in 1 kg salt} = \frac{524.93 \times 5 \times 10^{-6} \times 10^3}{50} \text{ g}$$

$$= 52.493 \times 10^{-3} \text{ g} = 52.493 \text{ mg.}$$

5.8 (i) $\sigma_{5p_z}^*$ (ii) π_{5p_x} (iii) π_{5p_y} (iv) $\pi_{5p_x}^*$ (v) σ_{5s}^* (vi) σ_{5p_z} (vii) σ_{5s} (viii) $\pi_{5p_y}^*$

5.9


5.10

(Initial) HOMO \longrightarrow (Final) LUMO $(\pi_{5p_y}^* = \pi_{5p_x}^*)$ $(\sigma_{5p_z}^*)$

5.11

 $I^- \xrightarrow{5p_z} \sigma_{5p_z}^* (I_2)$

INDIA in the Spotlight again with
ALLENites stellar performance at

**56th International Chemistry
Olympiad (IChO)**
Saudi Arabia 2024

1 GOLD & 1 SILVER MEDAL

GOLD Medalist
DEVESH PANKAJ BHAIYA
Classroom

SILVER Medalist
AVANEESH BANSAL
Classroom

ALLEN है... तो मुमकिन है

ALLEN

LEARNERS TO LEADERS AT WORLD STAGE

ALLEN's result
validated by

Official result validator

57th International Chemistry
Olympiad (IChO 2025)

United Arab Emirates

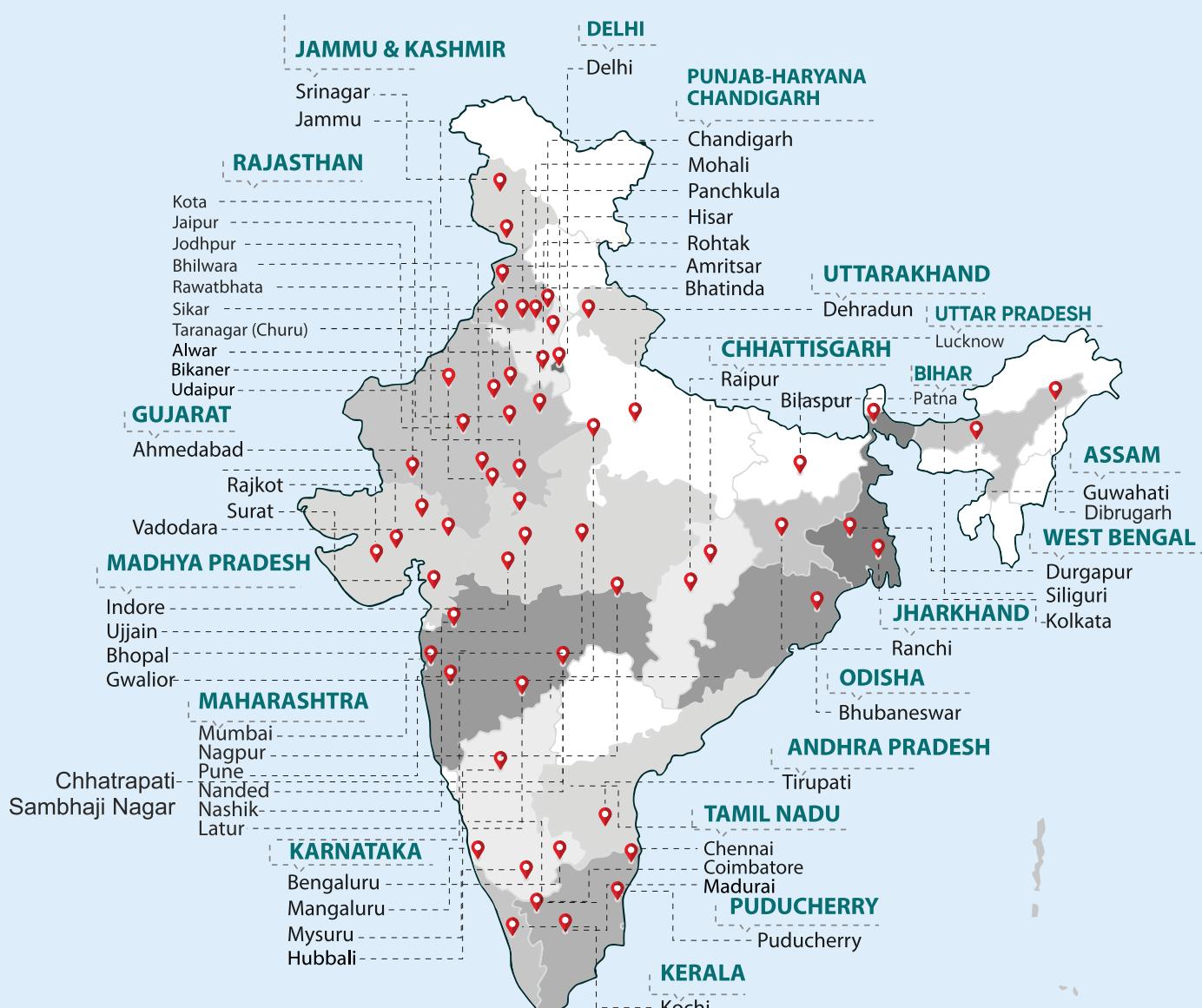
GOLD
MEDALIST

Devesh Pankaj Bhaiya

Classroom

SILVER
MEDALIST

Debadatta Priyadarshi


Classroom

**2 ALLENites selected for
57th IChO 2025 bagged
Gold & Silver Medals**

Heartiest Congratulations!

ALLEN है... तो मुमकिन है

MAP NOT TO SCALE

- OMAN
- KUWAIT
- SAUDI ARABIA
- BAHRAIN
- QATAR
- UAE

75

Presence in
Cities Across India

300+

Classroom Campuses

400+

Test Centers
Across India

40 Lac+

Students Mentored
since 1988

4 Lac+

Students Studying in
(2025-2026)

Pre-Nurture & Career Foundation Division

“SATYARTH-2”, New Jawahar Nagar, Ground Floor, Blok-A, KOTA (Raj.) -324005
Trin : +91-744-2752600/3510300 | Email : prenurture@allen.in

Corporate Office : “SANKALP”, CP-6, Indra Vihar, Kota (Raj.)-324005,
Trin : +91-744-2757575 | E-Mail : info@allen.in