

40th INDIAN NATIONAL MATHEMATICAL OLYMPIAD-2026

Date: 18/01/2026

Max. Marks: 102

Time allowed: 4.5 hours

SOLUTIONS

1. Let x_1, x_2, x_3, \dots be a sequence of positive integers defined as follows : $x_1 = 1$ and for each $n \geq 1$ we have

$$x_{n+1} = x_n + \left[\sqrt{x_n} \right].$$

Determine all positive integers m for which $x_n = m^2$ for some $n \geq 1$. (Here $[x]$ denotes the greatest integer less or equal to x for every real number x .)

Sol. Suppose for some n

$$x_n = m^2$$

$$\text{Then } \left[\sqrt{x_n} \right] = m \text{ & hence } x_{n+1} = m^2 + m$$

$$\text{As long as } m^2 \leq x_k < (m+1)^2$$

$$\text{We have } \left[\sqrt{x_k} \right] = m, \text{ and hence } x_{k+1} = x_k + m$$

∴ While the sequence stays in the interval $[m^2, (n+1)^2]$, the terms are of the form

$$x_k = m^2 + rm \quad (r = 0, 1, 2, \dots)$$

If the sequence reaches another perfect square before leaving this interval, then for some integer k , then $m^2 + rm = k^2$

$$k^2 - m^2 = rm$$

$$(k-m)(k+m) = rm$$

This equation has a positive integer solution only when $k = 2m$. Hence the next square reached after m^2 is $(2m)^2$

$$\text{Since } x_1 = 1 = 1^2$$

Repeating the above argument gives

$$1^2 \rightarrow 2^2 \rightarrow 4^2 \rightarrow 8^2 \rightarrow 16^2 \rightarrow \dots$$

$$\therefore x_n = m^2 \text{ for some } \boxed{m = 2^k} \quad (k \geq 0)$$

2. Let $f : N \rightarrow N$ be a function satisfying the following condition: for each $k > 2026$, the number $f(k)$ equals the maximum number of times a number appears in the list $f(1), f(2), \dots, f(k-1)$. Prove that $f(n) = f(n + f(n))$ for infinitely many $n \in N$. (Here N denotes the set $\{1, 2, 3, \dots\}$ of positive integers.)

Sol. Let ℓ be the no. that appears m_ℓ no. of times till

$$\Rightarrow f(n) = \max(m_\ell) = m \text{ (for convenience)}$$

$f(n)$ is a non-decreasing function beyond $n = 2027$ as it is the made of the data so far, the only new numbers appearing in the data will be the numbers, whose frequency goes up, since the function has first 2026 values not necessarily following the rule beyond 2026, it can have any large maximum value. Let $N = \max\{f(k) \mid k \in \{1, 2, \dots, 2027\}\}$

$N + 1$ itself appears 0 times in $\{f(1), f(2), \dots, f(2027)\}$

Since $f(n)$ is non-decreasing we claim that the value does not become a constant beyond any finite $n > 2027$

FTSOC

let $\exists n > 2027$ s.t. $m = f(n) = f(n + 1) \dots \infty$

thus to calculate $f(n + m)$ we must find at least m copies of m in the list before.

$$\Rightarrow f(n + m + 1) > f(n) = m$$

$\Rightarrow f$ will eventually be as large as $N + 1$ (contradiction)

Now let n be the first occurrence of $N + 1$

Since $N + 1$ appears 0 times in $\{f(1), f(2), \dots, f(n)\}$

$f(n) = f(n + 1) = f(n + 2) \dots f(n + N) = N + 1$ Now $N + 1$ appears $N + 1$

time $\Rightarrow f(n + (N + 1)) = N + 1$

$$\Rightarrow f(n + f(n)) = f(n)$$

This will remain true for all n such that $f(n)$ is the first occurrence of an integer in $\{f(1), f(2), \dots, f(n)\}$, $n > 2027$ and $f(n) > N$

3. Let ABC be an acute angled scalene triangle with circumcircle Γ . Let M be the midpoint of BC and N be the midpoint of the minor arc BC of Γ . Points P and Q lie on segments AB and AC respectively such that $BP = BN$ and $CQ = CN$. Point $K \neq N$ lies on line AN with $MK = MN$. Prove that $\angle PKQ = 90^\circ$.

Sol. W.L.O.G let $AB < AC$.

$N \rightarrow$ midpoint of incentre (I) and excenter (I_A) of $\triangle ABC$

So, N is circumcentre of $\triangle BIC$.

Let circumcircle of $\triangle BIC$ be ' W '

$$\begin{aligned} \text{Pow}_W A &= AN^2 - r_w^2 \\ &= AN^2 - BN^2 \\ &= AC \cdot AC' \\ &= AC \cdot AB = bc \end{aligned}$$

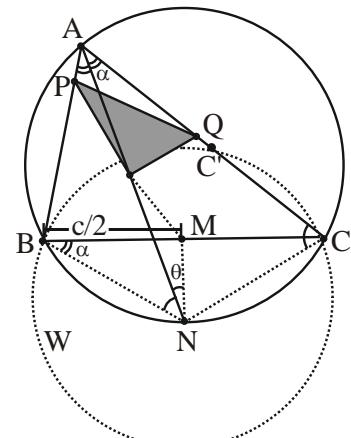
$$Q = \angle ANM = \left| \frac{B-C}{2} \right|$$

$$\begin{aligned} NK &= 2MN \cos \left| \frac{B-C}{2} \right| \\ &= 2BN \sin \left(\frac{A}{2} \right) \cos \left(\frac{B-C}{2} \right) \end{aligned}$$

In $\triangle ABN$ by sine rule

$$\frac{AN}{\sin \left(\frac{A}{2} + B \right)} = \frac{BN}{\sin \left(\frac{A}{2} \right)} \Rightarrow \frac{AM}{BN} = \frac{\sin \left(90^\circ + \left(\frac{B-C}{2} \right) \right)}{\sin \left(\frac{A}{2} \right)}$$

$$AN \sin \left(\frac{A}{2} \right) = BN \cos \left(\frac{B-C}{2} \right)$$



$$\therefore Nk = 2AN \sin^2\left(\frac{A}{2}\right)$$

$$\text{So, } AK = AN \left(1 - 2 \sin^2 \left(\frac{A}{2} \right) \right) = AN \cdot \cos A$$

$$\text{Let } AP = p \Rightarrow AB - BP = c - BN = p$$

$$AQ = q \Rightarrow AC - CQ = b - CN = b - BM = q$$

C-BN b-CN = b-BM

$$PQ^2 = AP^2 + AQ^2 - 2AP \cdot AQ \cos A$$

$$PK^2 = AP^2 + AK^2 - 2AP \cdot AK \cos\left(\frac{A}{2}\right)$$

$$QK^2 = AQ^2 + AK^2 - 2AQ \cdot AK \cos\left(\frac{A}{2}\right)$$

For $PO^2 = PK^2 + OK^2$

We show prove :

$$2AK^2 - 2AK \cos\left(\frac{A}{2}\right) (p+q) = -2pq \cos A$$

$$2AN^2 \cos^2 A - 2AN \cos A \cos (A/2) (p + q) = -2pq \cdot \cos A$$

We show effectively prove that:

$$AN^2 \cos A - AN \cos\left(\frac{A}{2}\right) \cdot (p+q) + pq = 0$$

By Substituting

$$\begin{cases} p+q = b+c - 2BN \\ pq = bc - BN(b+c) + BN^2 \\ b+c = 2AN \cos A \end{cases}$$

Proves the required result.

4. Two integers a and b are called companions if every prime number p either divides both or none of a , b . Determine all functions $f: \mathbb{N}_0 \rightarrow \mathbb{N}_0$ such that $f(0) = 0$ and the numbers $f(m) + n$ and $f(n) + m$ are companions for all $m, n \in \mathbb{N}_0$.
(Here \mathbb{N}_0 denotes the set of all non-negative integers.)

Sol. We require a function $f : N_0 \rightarrow N_0$ s.t.

$$(i) \text{rad}(f(n) + m) = \text{rad}(f(m) + n)$$

(ii) $f(0) = 0$

(iii) $\text{rad}(n)$ = largest square free divisor of n

i.e. if $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ $p_i \in \text{Primes}, \alpha_i \in \mathbb{Z}^+$

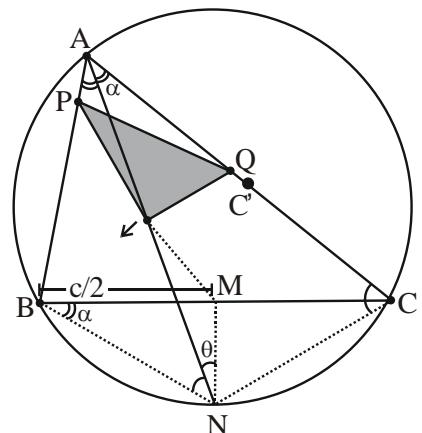
$\Rightarrow \text{rad}(n) = p_1 p_2 \dots p_k$ here all p_i 's are distinct

Claim 1 : $q \nmid f(p)$ where p and q are distinct primes.

proof $n = p$ and $m = 0$ gives

$$\text{rad}(f(n)) = \text{rad}(n) \Rightarrow \text{rad}(f(p)) = \text{rad}(p) = p$$

thus since $q \nmid p \Rightarrow q \nmid f(p)$



Claim 2 : $f(p) = p \forall p$ primes not of the form $2^m - 1$.

proof : since $q \nmid f(p) \forall$ distinct prime p, q

$$f(p) = p^k \text{ where } k \in \mathbb{Z}^+$$

$$\text{let } n = p, m = 1 \Rightarrow \text{rad}(f(p+1)) = \text{rad}(p+1)$$

$$\text{rad}(p^k + 1) = \text{rad}(p+1)$$

by Zsigmondy's theorem for $k > 2 \exists$ at least 1 prime divisor of $p^k + 1$ that doesn't divide $p+1$
contradiction.

$$\Rightarrow f(p) = p \forall p \text{ that are not 1 less than a power of 2}$$

Claim 3 : $f(p) = p \forall p$ of the form $2^m - 1$

by Dirichlet's theorem

infinitely many primes r exist s.t. $-p \equiv r \pmod{q}$ for p, q primes

$$\Rightarrow \text{let } m = r, n = p$$

$$\text{If } f(p) = 1 \Rightarrow q|r + p \text{ and } q|r + 1$$

$\Rightarrow q|p - 1$ but q was an arbitrary prime, contradiction

$$\Rightarrow f(p) = p \forall \text{ primes } p.$$

Claim 4 : $f(n) = n \forall n \in \mathbb{Z}^+$

Proof :

Consider an arbitrary large prime q such that

$$(-n) \pmod{q} = p \quad (\text{Dirichlet's theorem})$$

Where p is a prime.

For $m = p$

$$\text{rad}(f(n) + p) = \text{rad}(n + p)$$

$$q \mid f(n) - n$$

since of every sufficiently large q

$$f(n) = n \pmod{q}$$

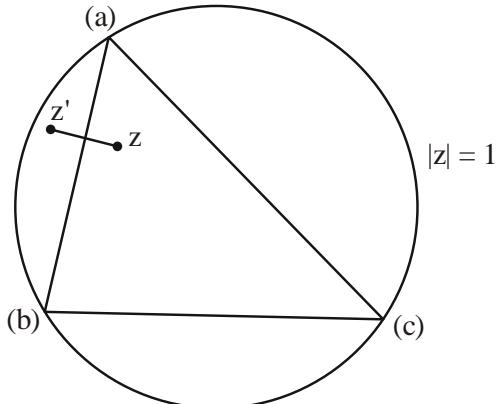
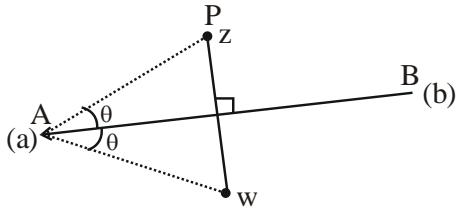
$f(n) = n$ identically.

5. Three lines ℓ_1, ℓ_2, ℓ_3 form an acute angled triangle T in the plane. Point P lies in the interior of T . Let T_i denote the transformation of the plane such that the image $T_i(X)$ of any point X in the plane is the reflection of X in ℓ_i , for each $i \in \{1, 2, 3\}$. Denote by P_{ijk} the point $T_k(T_j(T_i(P)))$ for each permutation (i, j, k) of $(1, 2, 3)$.

Prove that $P_{123}, P_{132}, P_{213}, P_{231}, P_{312}, P_{321}$ are concyclic if and only if P coincides with the orthocentre of T .

Sol. orthocentre $\rightarrow a + b + c$

circumcenter $\rightarrow O + O_i$



Reflection of $P(z)$ in segment joining a & b or $|z| = 1$.

$$\frac{z-a}{b-a} = \frac{AP}{AB} e^{i\theta}$$

$$\frac{w-a}{b-a} = \frac{AP}{AB} e^{-i\theta}$$

$$\frac{w-a}{b-a} = \overline{\left(\frac{z-a}{b-a} \right)}$$

$$\frac{w-a}{b-a} = \frac{\bar{z}-\bar{a}}{\bar{b}-\bar{a}}$$

$$\frac{w-a}{b-a} = \frac{ab\bar{z}-b}{a-b}$$

$$w = a + b - ab\bar{z}$$

$$\bar{a} = \frac{1}{a}, \bar{b} = \frac{1}{b}$$

$$\Rightarrow w-a = b - ab\bar{z}$$

$$P_{123}(z) = T_3(T_2(T_1(z)))$$

$$H = a + b + c$$

$$T_1(H) = b + c - bc \left(\bar{a} + \bar{b} + \bar{c} \right) = b + c - bc \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) = -\frac{bc}{a}$$

$$T_2(T_1(H)) = c + a - ca \left(\frac{\bar{b}\bar{c}}{\bar{a}} \right) = c + a + ca \cdot \frac{c}{bc} = a + c + \frac{a^2}{b}$$

$$P_{123} = T_3(T_2(T_1(H))) = a + b - ab \left(\frac{1}{a} + \frac{1}{c} + \frac{b}{a^2} \right)$$

$$= a + b - b - \frac{abc}{c} - \frac{b^2}{a} = a - \frac{ab}{c} - \frac{b^2}{a}$$

$$d_{123} = d(P_{123}, H) = \left| a + b + c - a + \frac{ab}{c} + \frac{b^2}{a} \right|$$

$$d_{123} = \left| b + c + \frac{ab}{c} + \frac{b^2}{a} \right|$$

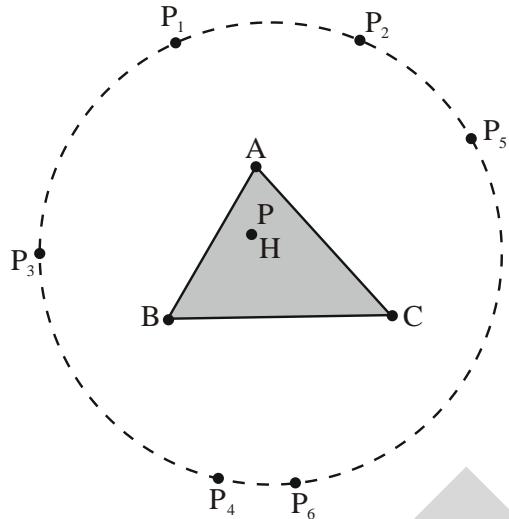
$$= \left| a^2b + b^2c + c^2a + a^3c \right|$$

$$\text{Similarly, } d_{321} = \left| c^2b + b^2a + a^2c + abc \right|$$

$$= \left| c^2b + b^2a + a^2c + abc \right|$$

$$= \left| \frac{1}{c^2b} + \frac{1}{b^2a} + \frac{1}{a^2c} + \frac{1}{abc} \right|$$

$$= \frac{|a^2b + c^2a + b^2c + abc|}{|a^2b^2c^2|} = \frac{d_{123}}{1}$$

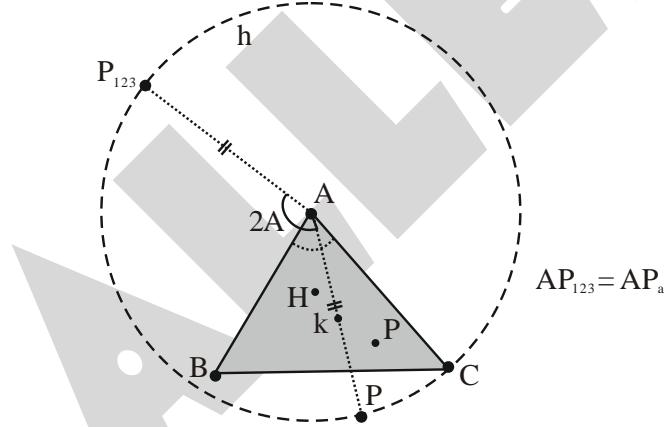


Similar logic can be applied to remaining permutations.
for $P = H$, the permutation of points obtained are concyclic.

Converse if $P \neq H$

Let P_a be reflection of P in side BC . The point P_{123} is obtained by reflecting P_a in AC & then in AB .

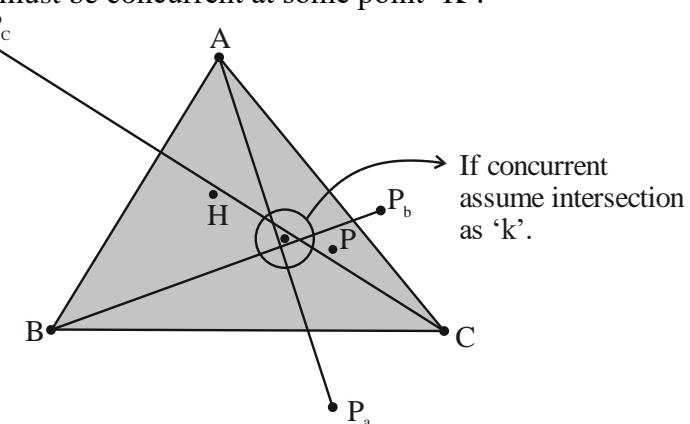
P_{123} is effectively image of P_a rotated by $+2A$ around A .



So, P_{123} & P_{132} are symmetric rotation of P_a about A in opposite direction. So, \perp^r bisector of $P_{123}P_{132}$ is AP_a .

For points to be concyclic center must be on 1st bisector.

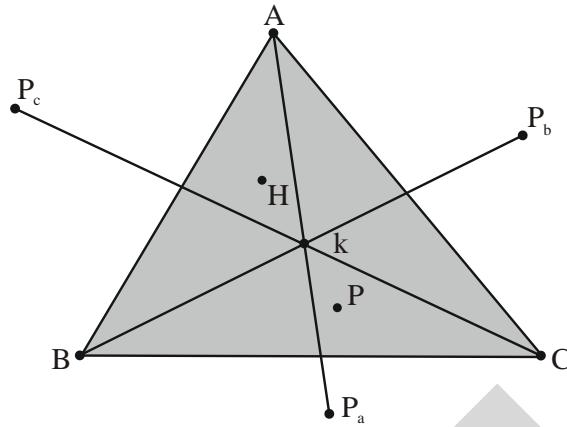
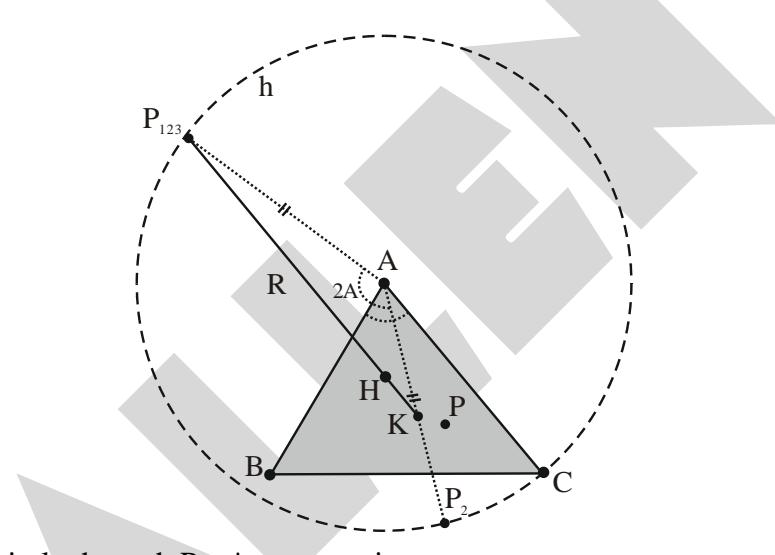
$\therefore AP_a, BP_b, CD_c$ must be concurrent at some point 'K'.



$$AP_{132} = AP_{123} = AP_a = \ell_a$$

$$BP_{213} = BP_{231} = BP_b = \ell_b$$

$$CP_{312} = CP_{321} = CP_c = \ell_c$$



R = radius of circle through $P_{i,j,k}$'s permutations.

$$P_a = b + c - bc\bar{p}$$

Solving like before

$$P_{123} = a + b - \frac{ab}{c} + \frac{b^2}{c} - b^2\bar{p}$$

$$\& P_{213} = a + b - \frac{ab}{c} + \frac{a^2}{c} - a^2\bar{p}$$

$$P_{123} - P_{213} = \left(\frac{b^2}{c} - b^2\bar{p} \right) - \left(\frac{a^2}{c} - a^2\bar{p} \right) = (b^2 - a^2) \left(\frac{1}{c} - \bar{p} \right) \neq 0 \quad (P \neq C \& a \neq b)$$

$$\therefore P_{123} - H \& P_{213} - H$$

must relate by rotation or reflection

$$\text{Solving : } |P_{123} - H|^2 = |P_{213} - H|^2 \Rightarrow p - ab\bar{p} = c - \frac{ab}{c} \quad \dots (1)$$

$$\text{Similarly, } |P_{132} - H|^2 = |P_{312} - H|^2 \Rightarrow p - ac\bar{p} = b - \frac{ac}{b} \quad \dots (2)$$

From (1) & (2)

$$\begin{aligned}
& -ab\bar{p} + ac\bar{p} = c - b - \frac{ab}{c} + \frac{ac}{b} \\
\Rightarrow & \bar{p}a(c-b) = (c-b) + \frac{a}{bc}(c-b)(c+b) \quad (c \neq b) \\
\Rightarrow & p\bar{a} = 1 + \frac{a(b+c)}{bc} = 1 + a\left(\frac{1}{b} + \frac{1}{c}\right) \\
\Rightarrow & p\bar{a} = 1 + \bar{a}(b+c) \\
p = & \frac{1}{\bar{a}} + b + c = a + b + c
\end{aligned}$$

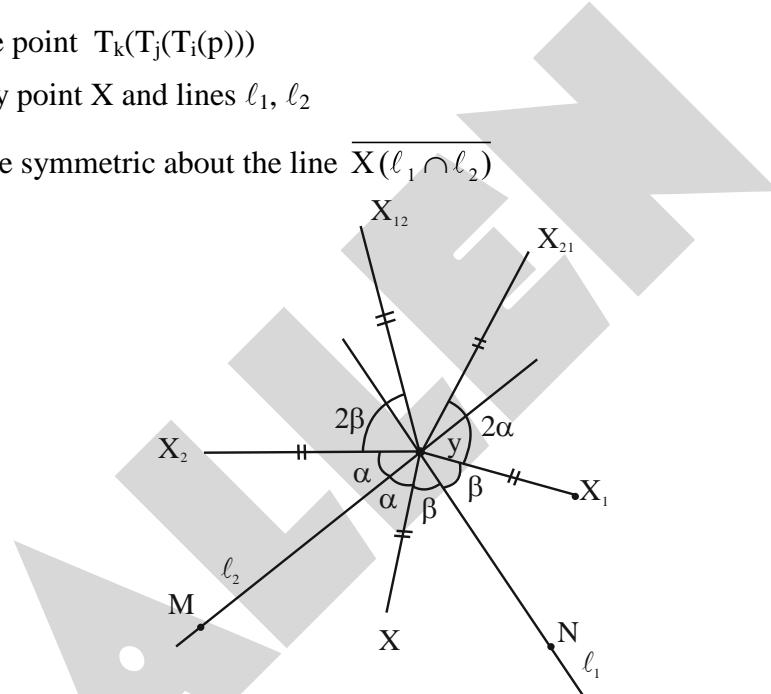
So, P can be related to H only if $P \equiv H$.

Alternate Solution :

Let P_{ijk} Be the point $T_k(T_j(T_i(p)))$

Claim : for any point X and lines ℓ_1, ℓ_2

X_{12} and X_{21} are symmetric about the line $\overline{X(\ell_1 \cap \ell_2)}$



Let $Y = \ell_1 \cap \ell_2$

$$YX_{21} = YX_2 = YX = YX_1 = YX_{12}$$

$$\text{if } \angle XYM = \alpha, \angle XYN = \beta$$

$$\Rightarrow \angle XYX_{21} = 2(\alpha + \beta) = \angle XYX_{12}$$

$\Rightarrow X_{12}$ and X_{21} are symmetric about XY

$\Rightarrow XY$ is \perp bisector of $X_{12}X_{21}$

$$\Rightarrow \text{let } \ell_1 \cap \ell_2 = C \quad T_1(A) = A'$$

$$\ell_2 \cap \ell_3 = A \quad \text{and} \quad T_2(B) = B'$$

$$\ell_1 \cap \ell_3 = B \quad T_3(C) = C'$$

\perp bisectors of the following 9 points of points is mentioned below.

$$\begin{array}{ll}
P_{123}P_{132} \rightarrow AP_1 & P_{23}P_{32} \rightarrow AP \Rightarrow P_{231}P_{321} \rightarrow A'P_1 \\
P_{213}P_{231} \rightarrow BP_2 & P_{13}P_{31} \rightarrow BP \Rightarrow P_{132}P_{312} \rightarrow B'P_2 \\
P_{312}P_{321} \rightarrow CP_3 & P_{12}P_{21} \rightarrow CP \Rightarrow P_{123}P_{213} \rightarrow C'P_3
\end{array}$$

Since $A'P_1 \cap AP_1 = \begin{cases} P_1 & \text{if } P \text{ does not lie on } \perp \text{ from } A \\ AP & \text{if } P \text{ lie on } \perp \text{ from } A \text{ to } BC \end{cases}$

Similarly for $B'P_2 \cap BP_2$ and $C'P_3$ and CP_3

If P does not coincide with the orthocentre of ΔABC then the 6 \perp bisectors $AP_1, A'P_1, BP_2, B'P_2, CP_3, C'P_3$ all meet at 3 distinct points outside the ΔABC

Hence the 6 points cannot be concyclic.

If P lies on the orthocentre then the following 3 sets of 3 lines are identical

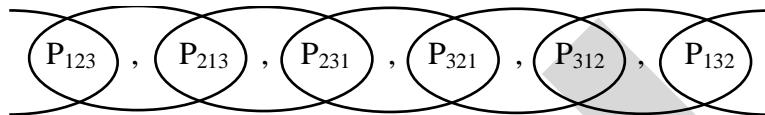
$$AP = A'P_1 = AP_1$$

$$BP = B'P_2 = BP_2$$

$$CP = C'P_3 = CP_3$$

\Rightarrow the common points of intersection is P .

Consider the 6 points P_{ijk} where i, j, k are permutation of 1, 2, 3



Circumcentre of any 3 consecutive points in this list is the point P thus P is equidistant from all 6 point and all these 6 points are concyclic.

6. Two decks A and B of 40 cards each are placed on a table at noon. Every minute thereafter, we pick the top cards $a \in A$ and $b \in B$ and perform a duel.

For any two cards $a \in A$ and $b \in B$, each time a and b duel, the outcome remains the same and is independent of all other duels. A duel has three possible outcomes :

If a card wins, it is placed back at the top of its deck and the losing card is placed at the bottom of its deck.

If a and b are evenly matched, they are both removed from their respective decks.

If a and b do not interact with each other, then both are placed at the bottom of their respective decks.

The process ends when both decks are empty. A process is called a game if it ends. Prove that the maximum time a game can last equals 356 hours.

Sol. Assume a game of lattice hopping being played on a grid for lattice points x, y where $1 \leq x, y \leq N$ the process of card comparision in the question can be mapped to lattice jumps.

(i) If deck A card wind then the equivalent move becomes.

$$(x, y) \rightarrow (x, y + 1) \text{ number } x, y \text{ are mod } N$$

(ii) If deck B card wins then

$$(x, y) \rightarrow (x + 1, y)$$

(iii) If no interaction then $(x, y) \rightarrow (x + 1, y + 1)$

(iv) If equal then the (x_0, y_0) must be highlighted on reaching such a point both cards are removed from the deck this equals to removed of all points $(x_0, y), y \in \{1, 2, \dots, N\}$ and $(x, y_0), x \in \{1, 2, \dots, N\}$,

$2N - 1$ points and $N \rightarrow N - 1$.

Now all points are re-numbered $(x, y) \rightarrow (f(x, x_0), f(y, y_0))$

$$\text{where } f(n, n_0) = \begin{cases} n; & n < n_0 \\ \text{D.N.E.}; & n = n_0 \\ n-1; & n > n_0 \end{cases}$$

In order to find an upper bound, we need to have at least n non-attacking rooks position on an $n \times n$ board such that these are the highlighted positions thus this leaves $n^2 - n + 1$ maximal moves before making a move into a highlighted lattice point and effectively resetting the lattice board.

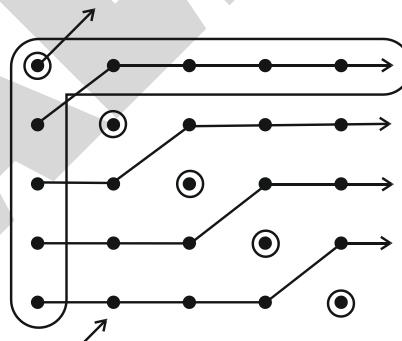
$$\begin{aligned} \Rightarrow \text{Max moves of a terminating process} &\leq \sum_{n=1}^N n^2 - n + 1 \\ &= \frac{N(N+1)(2N+1)}{6} - \frac{N(N+1)}{2} + N \\ &= \frac{N(2N^2 + 3N + 1 - 3N - 3 + 6)}{6} \\ &= \frac{N(N^2 + 2)}{3} \end{aligned}$$

for $N = 40$ this upper bound is $\frac{40 \times 1602}{3}$ min

$$\begin{aligned} &= \frac{40 \times 1602}{3 \times 60} \text{ hr} \\ &= 2 \times \frac{1602}{9} = \boxed{356} \end{aligned}$$

Construction : Let the highlighted points be (x, y) where $x + y = N + 1$

let the path avoiding all these highlighted points be as in the diagram below, for $N = 5$



$$M(x, y) = \begin{cases} (x+1, y); & x + y \neq N \text{ or } N+1, x \neq N \\ 1, y; & x = N \\ (x+1, y+1); & x + y = N \\ (x, y); & x + y = N+1 \text{ highlighted pts} \\ \text{with board reset} & \end{cases}$$

The path winds around all highlighted pts and covers $N^2 - N$ pts, starting at $(1, 1)$ and ending at $(1, N)$ after which the entire first column and top row are deleted and we return to $2, 1$ which is $1, 1$ by default.

$$\text{Thus total moves} = \sum_{n=40}^1 n^2 - n + 1 = 21360 \text{ min} = 356 \text{ hrs}$$

Best Wishes to **INMO 2026 Aspirants**

ALLEN® Career Institute

Announces

ALLEN's
BOOT CAMP

FOR

IMOTC (International Mathematical Olympiad Training Camp)

1st to 10th April 2026

WORKSHOP HIGHLIGHTS

Online Mode

Training and special mentoring by Experts of Non-Routine Maths.

Comprehensive course Material with Question bank based on Latest test patterns

To get Exposure of the level of competition in peer group Exclusive doubt counter removal facility

Classes and guidance session by past year medalist

To learn better Problem Solving Techniques.

Assignments & Discussions
Mock Test with in-depth Test Analysis

A lifetime learning experience to have faculties round the clock.

For more details & enrollment, visit: workshop.allen.ac.in

CALL NOW

+91-82090 93674, 9462031855, 78209 70800,
97854 87851, 89470 21905, 74258 68704, 85618 53186

WORKSHOP FEE
₹ 1000

SCHOLARSHIP
upto **90%**

ALLEN

ANOTHER GOLDEN
MOMENT FOR
INDIA



**ATUL S.
NADIG**

**ARCHIT
MANAS**

ALLEN Classroom Students

**GOLD & BRONZE
MEDALS**

in International Mathematical Olympiad

*Heartiest
Congratulations!*

ALLEN है... तो मुमकिन है

IMO2024
**GOLDEN MOMENT
FOR INDIA**

IMO 2024

65th International Mathematical
Olympiad at Bath, United Kingdom

Rushil Mathur

Classroom Student
Gold Medalist

*Heartiest
Congratulations*

ALLEN

Think Olympiad,

Think **ALLEN**

ALLEN

Final Round Result:
**57th National Mathematics
Talent Contest (NMTC) 2025-26**

Conducted by The Association of Mathematics
Teachers of India (AMTI), Chennai

36

ALLEN students secured
Top 20 Ranks (Primary, Sub-Junior,
Junior & Inter) in NMTC Final

Heartiest Congratulations

REGIONAL MATHEMATICAL OLYMPIAD (RMO) Result 2025

(Stage-2 of International Mathematical
Olympiad (IMO) 2026)

229*

(As per result compiled so far)

ALLENites selected for INMO 2026
INDIAN NATIONAL MATHEMATICAL OLYMPIAD
(Stage 3 of IMO 2026)

Heartiest
Congratulations

ALLEN

Think OLYMPIAD
Think ALLEN

ALLEN

Result: National Standard Examination (NSE) 2025-26

(Stage 1 of Official International Science Olympiad 2026)

637*

Students Selected for
Indian National Olympiads (INO 2026 - Stage 2)

*As per result compiled so far

138
students
for INPhO

189
students
for INChO

143
students
for INAO

73
students
for INBO

94
students
for INJSO

Think Olympiad
Think ALLEN

Heartiest
Congratulations